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Abstract
Understanding the cognitive and behavioral aspects
of student learning in a principled manner can en-
able educators and psychologists to improve the
state of education. With this in mind, we propose a
novel data-driven probabilistic framework to model
student learning over a period of time. Our frame-
work provides a means to quantify and track stu-
dent learning as a function of critical factors such
as student skill level, quality of instruction and the
amount of prerequisite understanding. We evalu-
ate our proposed model on a real dataset of student
responses and show that it achieves good accuracy
in predicting responses for previously unseen ques-
tions.

1 Introduction
The ability to understand and quantify characteristics of stu-
dent learning can have immense benefit in terms of improv-
ing the quality of instructional content as well as person-
alizing instruction to individual students. There has been
research focused on tracking and modeling student learn-
ing in Intelligent Tutoring Systems [Chang et al., 2006;
Corbett and Anderson, 1995; Villano, 1992]. However, many
of these models lack a relation to the psychological and cog-
nitive aspects of student learning. In this paper, we propose
a novel probabilistic framework to quantify, track and un-
derstand student learning along two cognitive dimensions—
grasping power and takeaway fraction. Our model heavily
relies on David Ausubel’s idea that the single most impor-
tant factor influencing learning is what the learner already
knows [Ausubel et al., 1978]. Specifically, our framework
models sequential learning of a set of related concepts over
time, wherein students incrementally build on what they have
learnt so far. We evaluate our model on a popular real-
world dataset for benchmarking student learning models—
ASSISTments [ASS, ] and show that it achieves an accuracy
of∼ 83% in predicting student responses on a hold-out set of
questions.

2 Data-Driven Student Learning Model
Our goal is to develop a simple, general and mathematically
tractable model that can capture the most salient aspects of
student learning. To that end, we consider the following sce-
nario: There is a universe T of concepts and the students are
enrolled in some education program that teaches these con-
cepts. We abstract away the details of the education program
and suppose that each student is presented with a sequence of
instruction steps, each step designed to teach a single concept.
The objective of each student is to maximize the learning of
all concepts over the duration of the program.

2.1 Terminology
We first introduce some key terms that form the basis of our
model:

• Concept Utility and Prerequisites. We suppose that
each concept T ∈ T is associated with some utility ∆T

that quantifies the “importance” of this concept in the
domain of study. Further, the relationship (or depen-
dence) between different concepts is described using a
prerequisite graph such that P(T ) ⊂ T denotes the pre-
requisites for concept T .

• Instruction Quality. We assume that the instruction
provided to a student in each step has a certain qual-
ity associated with it, denoted by Q(·). Our notion of
quality incorporates the knowledge level of the teacher
and her presentation/communication skills, along with
the quality of the educational material itself.

• Knowledge State. We also associate a knowledge state
(or skill level) KS(·) for each student that indicates the
general aptitude for the specific topic/field of study, with
higher values denoting more skilled students.

2.2 Student Learning Parameters
We focus on quantifying student learning of the different
concepts along two dimensions: i) what is the ability of a
student to grasp (or understand) new instructional content for
a given concept? We term this the grasping power of that
student for that concept. ii) how much has a student retained
whatever has been taught so far for a given concept? We
define this as the takeaway fraction for that student and that
concept. We describe both of these quantities next.

Grasping power: We assume that every student “learns”
a certain fraction of each step’s content as she progresses
through an instruction sequence. For a student s and concept
Ti, we say that 0 ≤ αs(Ti, n) ≤ 1 denotes the grasping
power for content presented at step n during the learning
process, n ≥ 1, and is defined as the fraction of step n’s
content that the student is able to understand.

Takeaway fraction: This quantity measures the net reten-
tion for a particular concept at any learning step. Again for
student s and concept Ti, we say that 0 ≤ Fs(Ti, n) ≤ 1
denotes the takeaway fraction before the start of the nth step
of instruction, n ≥ 1.

We define and choose grasping power and takeaway fraction
in the above manner because every instruction step aims to
improve or reinforce the understanding of a particular con-
cept, and the goal of the student is to (eventually) fully under-
stand all the concepts.
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2.3 Parameter Characterizations

Here, we describe how we update the model parameters given
a sequence of instruction steps presented to a student.
Updating Grasping Power. The grasping power is charac-
terized as follows:

αs(Ti, n;w1,w2) =
G1 (Qn(Ti),KS(s, n);w1)×G2 (Hn(P(Ti));w2)

where w1,w2 are parameters, KS(s, n) is the knowledge
state of student s at the beginning of step n and Hn(P(Ti))
is the collection of takeaway fractions for concept Ti and
its prerequisites P(Ti) at the beginning of step n. G1 and
G2 take appropriate functional forms based on the context
and we specify an example in Section 3. We can think of
αs(Ti, n) as the probability of getting a question, testing
concept Ti, correct at the nth step. The intuition behind the
above update is that grasping power of a student is dependent
on two factors: (a) the instruction quality (independent of
the student) and the student skill level KS (which captures
long-term learning) and (b) the ability of the student to retain
the corresponding prerequisite concepts up to step n (which
captures short-term learning).

Updating Takeaway Fractions. The takeaway fraction is
updated as follows:

Fs(Ti, n+1) =


0 if n = 0

Fs(Ti, n) if step n does not teach concept Ti
Fs(Ti, n) + (1− Fs(Ti, n))× αs(Ti, n) else

(1)
The equation above says that after n learning steps, the total
retention for concept Ti increases by a fraction of the amount
that was not learned earlier, 1 − Fs(Ti, n). That fraction,
αs(Ti, n), is precisely the grasping power of the student at
step n.

Updating Knowledge States. After a sufficient number of
instruction steps (such as at the end of every course), the
Knowledge State of the student is updated as follows:

KSnew(s) = KSold(s) +
∑
Ti∈T

Fs(Ti, N)×∆Ti
(2)

where N is the number of steps since the last update. This
update rule is motivated by the intuition that certain concepts
are more fundamental or important (as measured by the util-
ity parameter ∆Ti

) in capturing the skill level in a particular
domain.

2.4 Estimating Model Parameters

In order to estimate the parameters w1,w2 we assume access
to some observed feedback (in this case binary but this could
be extended to handle non-binary responses too) from each
student. Consider the set of sequences of student responses

as follows:

seq(s1) = {score(T11), score(T12), . . . , score(T1n1
)}

seq(s2) = {score(T21), score(T22), . . . , score(T2n2
)}
...

seq(sk) = {score(Tk1), score(Tk2), . . . , score(Tknk
)}

where score(Ti) is a binary value: 0 (incorrect) or 1 (correct).
For each of these sequences, we can compute the probabil-

ity of observing them under our student model and we use
maximum likelihood estimation to estimate the parameters
w1 and w2. We use an off-the-shelf method like BFGS to
optimize the likelihood function.

3 Early Results
To evaluate the performance of our student learning model,
we conducted experiments on a real world dataset - ASSIST-
ments. This dataset is a problem-logs table i.e., each row is
a record of a student’s response to a particular question and
consists of fields such as correct, response time, number of
attempts etc. We randomly sample 100 students and 10 con-
cepts. We manually build a prerequisite graph for the chosen
concepts. 80% of the questions that each of these students
respond to are used for parameter estimation and the remain-
ing 20% are used for testing the model. In all, we have 4710
assessment results across a total of 10 concepts. Since we do
not have any information about the instruction quality and the
knowledge states of students, we assume that G1(·, ·) = 1.
For the function G2, we choose a sigmoid form:

αs (Ti, n;w) = σ(w>xn) (3)
where σ(·) is the sigmoid function and the feature vector xn

of length |T |+1 contains the takeaway fractions concept Ti as
well as its prerequisites—we put a 0 in entries of the vector
xn corresponding to the remaining concepts (the additional
entry corresponds to a bias term).

We use the sigmoid function so that we can represent the
grasping power as a probability (0 ≤ αs(Ti, n) ≤ 1). Fur-
thermore, we update the takeaway fraction (eq 1) if and only
if the student’s response for the question related to the con-
cept Ti at the nth step is correct.

Here, the task is to predict whether a student’s response to
the unseen 20% of questions will be correct or not. Here, if
αs for a question is greater than or equal to 0.5, the model
predicts the student response to be correct and otherwise in-
correct. When we evaluate the probabilistic framework for
student learning, we get an average 82.85% test accuracy
across the 100 students. We observed that there exists a di-
rect relationship between the magnitude of the weight corre-
sponding to a particular concept and the number of concepts
it is a direct or indirect prerequisite of. This suggests that
the model is able to capture the hierarchical nature of student
learning. Further, we observe that some of the weights are
negative. For instance, the weight corresponding to the bias
term which suggests that the probability of getting a question
correct when a student starts learning is less than 0.5. Simi-
larly, for concepts to which a negative weight was assigned,
one can make the claim that these concepts are being newly
tested/learned.
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