GreenApps: A Platform For Cellular Edge Applications

Talal Ahmad Edwin Reed-Sanchez Fatima Zarinni
NYU NYU NYU
ahmad@cs.nyu.edu elr210@nyu.edu fzarinni@cs.nyu.edu
Alfred Afutu Kessir Adjaho Yaw Nyarko
NYU Abu Dhabi NYU Abu Dhabi NYU
alfred.afutu@nyu.edu mka325@nyu.edu yaw.nyarko@nyu.edu
Lakshminarayanan
Subramanian
NYU
lakshmi@cs.nyu.edu
ABSTRACT

This paper presents the design, implementation and deployment of
GreenApps, a ground-up platform that enables off-grid, near off-line
and highly available cellular applications in rural contexts. The
GreenApps platform enables rapid development and deployment of
almost-always available applications that can be executed locally on
top of open-sourced cellular base stations. The GreenApps platform
has been deployed in two rural regions in Kumawu, Ghana and
Pearl Lagoon, Nicaragua and supports different community-centric
applications.

ACM Reference Format:

Talal Ahmad, Edwin Reed-Sanchez, Fatima Zarinni, Alfred Afutu, Kessir Ad-
jaho, Yaw Nyarko, and Lakshminarayanan Subramanian. 2018. GreenApps:
A Platform For Cellular Edge Applications. In COMPASS ’18: ACM SIGCAS
Conference on Computing and Sustainable Societies (COMPASS), June 20-22,
2018, Menlo Park and San Jose, CA, USA. ACM, New York, NY, USA, 5 pages.
https://doi.org/10.1145/3209811.3212704

1 INTRODUCTION

Despite significant advances in the penetration of cellular networks
in developing regions in the past decade, the growth has been
predominantly centered in urban regions, with relatively low rural
presence [11-13, 15, 16, 18]. The conventional cellular connectivity
model has not proven to be economically viable for rural settings
due to lack of stable and reliable grid power [9] and due to lack of
reliable backhauls and data services [10, 14]. The situation is further
exacerbated by the fact that most rural areas have low population
densities which translate to lesser revenue for commercial cellular
providers.

This paper presents the design, implementation and deployment
of GreenApps, a platform that leverages programmable base stations

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

COMPASS ’18, June 20-22, 2018, Menlo Park and San Jose, CA, USA

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5816-3/18/06...$15.00
https://doi.org/10.1145/3209811.3212704

Internet

LocalApps
Cloud Store

---------------- §———

Low bandwidth
backhaul link

Figure 1: GreenApps System Architecture. GreenApps archi-
tecture is described in detail in section 2

to deliver off-grid, near off-line mobile applications that empower
rural communities. Recent advances in hardware [1, 2, 6, 8] and
open-source software [4, 5] provide a unique opportunity to deploy
programmable cellular networks in rural contexts; however, most
deployments [7, 13, 19] of such base stations have focused primarily
on providing basic communication services like calls and SMS.
Heimerl et al. [13] demonstrated the viability of independently run,
locally operated cellular networks. Similarly, Rhizomatica [7] has
deployed tens of community-run GSM cellular networks in Oaxaca,
Mexico with a short-term experimental spectrum license. Zheleva
et al. [19] deployed Kwiizya, a system for enabling basic calls and
SMS-based service in Zambia. However, there has been very limited
work on leveraging these programmable base stations to enable
new community-based mobile applications at the edge.

We present our experiences in designing, implementing and de-
ploying GreenApps in hard to reach rural regions in Ghana and
Nicaragua. We provide technical details of how we built our plat-
form, as well as details of the development process for our appli-
cations within GreenApps. We have deployed our complete end-
to-end platform, including applications, in rural regions, in both
countries. We also present an evaluation of key components of the
GreenApps platform. GreenApps is currently serving populations
in Nicaragua and Ghana, and we have preliminary evidence on user
satisfaction with our platform. A wide-scale and in-depth study
of the impact of our platform on the livelihood of locals in these
regions is part of our future work.


https://doi.org/10.1145/3209811.3212704
https://doi.org/10.1145/3209811.3212704

COMPASS ’18, June 20-22, 2018, Menlo Park and San Jose, CA, USA

2 GREENAPPS ARCHITECTURE

Our GreenApps platform is shown in Figure 1. GreenApps con-
sists of the following 4 main building blocks: (1) an inexpensive
open-source GSM base station; (2) a local server; (3) new mobile ap-
plications that we built for specific communities; and (4) an Internet
backhaul link, whenever available, for opportunistically synchro-
nizing local apps with the cloud store. The main goal of GreenApps
is to satisfy the essential needs of local communities via mobile ap-
plications that can operate under extreme rural conditions with no
power, and no cellular or Internet connectivity. Under the condition
where an Internet backhaul link is available, GreenApps exploits
this opportunity to provide services distributed across multiple
cellular base stations.

2.1 Enabling Edge Application Support

GreenApps supports SMS, voice and data-centric applications lo-
cally using an approach which is completely different from how ap-
plications are built in conventional cellular networks. In the conven-
tional cellular architecture, messages are routed from base stations
to the Internet-facing edge in the core network (after traversing
various entities in the core). The Internet-facing edge then routes
messages to specific data centers where applications are hosted.
While this architecture is designed to be consistent and scalable, it
requires reliable links from the base station to the Internet-facing
edge in cellular core network. Contrary to this our goals are to
reduce dependence on backhaul and to simultaneously provide ap-
plication support for applications to run locally at the base station.
To achieve this, we need to route messages in a scalable manner and
prevent any unintentional blocking of critical user communication
in this process. We introduce hooks in the routing software at the
base station in order to route messages to applications based on the
destination short code and send them to the appropriate application
engines.

Our platform leverages the hooks and already available APIs to
build useful applications in base stations that use the OpenBTS or
Osmocom stacks. For each application, the local server coupled with
the base-station runs the applications locally and the messages from
clients are forwarded by the base station to the correct application.
To route an SMS message to a particular application based on the
application short code, we used different tools for the OpenBTS
and Osmocom software stacks. The OpenBTS stack usually works
with smqueue to route all messages. Instead we routed the messages
to Freeswitch mod_sms module specially designed to handle SMS
traffic. mod_sms enables us to route the messages using a chat-plan
defined through XML to route SMS based on the destination phone
number. In the Osmocom stack, the RCCN library is used to route
messages in conjunction with osmobsc. All received messages are
routed to a local python server which routes appropriate responses
back into the network using the same library. We modified the code
of sms.py in RCCN to route the messages intended for applications
(based on the destination short code) to our local application server.
Given the current operational constraints of the OpenBTS and
Osmocom stacks, we believe a single compute server suffices for
running several applications without any performance penalties.

Across both the stacks, we leverage the Asterisk PBX setup for
enabling IVR server applications. The Asterisk software is installed

T. Ahmad et al.

locally and all calls to the IVR application short code are bridged
to Asterisk. The users can listen to a menu of options and navi-
gate by pressing various keys. Enabling this feature is a standard
functionality available in Freeswitch and any other PBX software.

2.2 Identities and Distributed Applications

A key building block for supporting different forms of applications
in GreenApps is an identity management layer. GreenApps supports
three basic types of identities: network identities, user identities
and application identities. In GreenApps, the common user identity
is the the International Mobile Subscriber Identity (IMSI) which
is physically written on a SIM card. The network identity is the
identity issued by the network against the IMSL. This is typically the
phone number of the user, in our case this refers to a local phone
number identifiable within the base station.

In GreenApps, distributed applications can be built by using
application specific identities, which refer to unique information
state of the application that may be tied with one or a group of user
identities. The identity space corresponding to an application can
be viewed as a hash table or a key value store. For example, consider
the case where two users wish to perform a BUY/SELL transaction
in GreenApps across multiple cellular sites connected via a server in
cloud; each item transacted is associated with a unique application
identity and each buy/sell bid is a mapping between an application
identity and a set of user identities. The complete key/value store
of such identities in an application forms the application state. The
application state is manipulated by simple put/get operations when
the application is running locally, but if an application is running
in a distributed manner across multiple base stations, then the local
state across each base station needs to be selectively synchronized
with the cloud state. To achieve this, we provide primitives for
distributed applications running across multiple base stations.

2.3 Syncronization Primitives

In GreenApps we provide some primitives for synchronization be-
tween cellular nodes and a cloud based server. These primitives are
available to all applications using a python library. These primitives
provide a flexible and convenient way to upload data to the server
and enable distributed applications when the backhaul is available.
Each primitive gives the application a choice of syncronization in
a slightly different way based on urgency of syncronization for a
particular application funcationality.

1. SLOWPUT(Identity i, Type t, Data d):

GreenApps is designed to provide local applications but it is
designed to provide synchronization with the cloud if there is a
need. To this end, for each application identity the application logic
is provided a method to define synchronization requirement. The
Internet link between the base station and the cloud has a low
bandwidth-delay ratio and is typically intermittent. This raises
questions regarding what identities need to be synchronized to
ensure high availability to a user while having consistency in the
application state at the cloud. First, to ensure high availability of
identity lookup, GreenApps supports quick local authentication
of user identities; pre-registered users and two users within the
same base station can communicate with each other without the
need for backhaul connectivity to the cloud. Second, we provide



GreenApps: A Platform For Cellular Edge Applications

synchronization support for each of the application identities so
that users can pick and choose the consistency over availability
where necessary by ensuring the data is saved on the cloud before
it is saved locally.

In the event, the GreenApps base station has a backhaul link
with moderate bandwidth, GreenApps can enable lazy synchro-
nization of application state between the local server instance and
a cloud instance of the same application to enhance end-to-end
reliability. GreenApps supports an application agnostic primitive
SLOWPUT, which is a bandwidth-aware mechanism to synchronize
data between the local node hosting applications and a cloud data
store. SLOWPUT provides a controllable way to synchronize appli-
cation state to the cloud. We achieve this by maintaining a common
queue across various applications. This queue contains different
data items(from different applicatioins) that need to be uploaded
to the cloud and uses a fair queuing mechanism to allocate the
bandwidth between competing requests.

We used Memcached [3] to provide the functionality of lazy
synchronization. Memcached is a high-performance, distributed
memory object caching system which can be used for general ap-
plications. A queue is maintained using a linked list of different
objects in cache. An item is added to the queue if an application
executes the SLOWPUT primitive. There is a separate program that
is always running and keeps uploading the items in the queue if
the bandwidth is available. The items are uploaded on a first come,
first served basis. The function call for SLOWPUT is as follows:
SLOWPUT(Identity i, Type t, Data d).In this call, user i
communicates marshalled data d for application t.

2. FASTGET(Identity i, Type t, Data d):

This primitive is used by the local application to send and receive
data from the server in an active manner. The parameters include
a user 1 communicating data d for application t. This primitive is
usually called as a result of an application function when there is
a higher urgency needed for consistency in application state. The
communication is not queued, as in SLOWPUT primitive. Instead, this
primitive is executed instantaneously, provided the the backhaul
link is available. For example, any inconsistencies in the case of a
banking transaction are grave, and a strong consistency has to be
ensured even if the user does not get a response immediately. Such
applications use the FASTGET primitive and marshall the transaction
in the data parameter, forwarding it to the central server of the
banking application.

3 APPLICATIONS

In this section, we describe three applications we deployed using
GreenApps in Ghana and Nicaragua. These applications are used
for various useful functions in the communities like dissemination
of information, entertainment and communication.

3.1 Fishline

Fishline is an SMS-based application that enables small business
owners to send out mass advertisements over SMS to people in the
community. This application has been built and is running in the
Pear] Lagoon GreenApps platform. To motivate the need for Fishline
we conducted 6 qualitative interviews in Pearl Lagoon. People
interviewed included 2 artisan fisherman, 2 deep water fishermen,

COMPASS ’18, June 20-22, 2018, Menlo Park and San Jose, CA, USA

and 2 owners of fishing cooperatives. We chose various poeple
associated with the fishing community because that is how most
people earn a livelihood in the area. This cross section of fishermen
represents the 3 basic types of individuals working in the local
fishing economy. We asked them questions about demographics,
their fishing practices, and the economics of Pearl Lagoon. All the
interviewees suggested interest in the idea of an application to
advertise fish for sale. Fishing cooperatives also saw a use for the
Fishline, since they would be able to get messages earlier before
fishermen are on shore, and can prepare for large catches as they
arrive. Fishline is an entirely local application and no syncronization
primitives were used in the Fishline application.

3.2 P2P Transactions Marketplace in Ghana

We built a P2P transactions application that uses an SMS-based
interface to enable traders to sell comodities to customers in the
community. We designed our application in a way where farmers
and traders could look up the prices that others are offering for the
product before deciding whether they want to sell or buy from a par-
ticular user. There are three kinds of messages sent, SELL, BUY and
SEARCH. The SELL message is of the format,'SELL <commodity>
<amount> <price>". For example, if farmer wants to sell 5kg of
corn for 10 cedil, then, the message “SELL corn 5kg 10" is sent
via SMS, and this message is saved in a database along with the
user’s number who sent it. Subsequent people who are interested in
buying or looking up the price can do so using a BUY or SEARCH
SMS. This application was deployed in our Ghana setup.

Whenever the messages match a short code for P2P application,
the message is routed to the HTTP server hosting the application
code. The lazy SLOWPUT is used to send data to the server on sale of
a commodity. Therefore when a user tries to sell, we acknowledge
the sell has been received locally(by sending a message back to
seller) and transfer the sell to the cloud in a lazy manner. In case the
user is interested in purchasing a commodity, FASTGET is used, and
the data returned is sent to the user over one or more text messages.
This is because we want strong consistency and do not want to give
user a response immediately without ensuring that we are actually
able to update the record in the cloud.

3.3 IVR-Based Social Media

Traditional IVR systems have required access to either a cloud
based service or have relied on a local server with a cellular dongle
connecting to a local cellular network service. The key benefit
of the GreenApps platform powered IVR application is to enable
an off-line and off-grid IVR application. By attaching the server
functionality to the base station, the application server functionally
locally resides on the programmable base-station without the need
for backhaul connectivity.

The key building block for this application is the local code that
glues the IVR to the cellular system. The important function is the
ReceiveHandler running at local server, which is invoked using
a HTTP request on entering the IVR extension. After the initial
HTTP request, the call is bridged from base station to Asterisk IVR
server running locally. The Asterisk server logs each input of user
as entered. If the user is recording a message, the ReceiveHandler

Icedi is the local currency in Ghana



COMPASS ’18, June 20-22, 2018, Menlo Park and San Jose, CA, USA

Figure 2: CDF of time it takes for the different functions in
the P2P Marketplace application

— SMS SLOWPUT ti
File SLOWPUT timeline

Figure 3: CDF of time taken for the SLOWPUT of file vs SMS
and a view of the queue in the P2P Marketplace application

is executed after its completion. The ReceiveHandler uses the lazy
SLOWPUT primitive to send the recorded file to the cloud component
for lazy syncronization.

4 APPLICATION PERFORMANCE AND
EXPERIENCES

We briefly outline some of the early implementation and deploy-
ment experiences in running these applications.

Marketplace Application: As a basic setup we had two base
stations, one in Ghana and the other one in New York. We developed
an Android application that enables phones to automatically SELL
and BUY items in a periodic manner. We had 4 phones sending SELL
messages and 3 phones sending BUY and SEARCH messages. 5 of the
7 phones were connected to the BTS in Ghana and the others were
connected to the base station in New York. Simultaneous with the
above application we made calls manually to the IVR application
and ran a script at local server to generate data. This helped us
simulate the local component receiving data from IVR and sensing
applications.

We report the performance of the P2P transactions application
in Figure 2. The graph above shows the end-to-end latency between
the local application and server for the BUY,SELL and SEARCH oper-
ations. It is important to recall that the SELL operation translates to
the SLOWPUT primitive, while BUY and SEARCH translate to FASTGET
primitives. It can be observed in Figure 2, there is a clear distinction
between the time it takes for SELL, compared to BUY and SEARCH.
This is expected because SELL requests are queued and processed in
a lazy manner while the BUY and SEARCH are executed using the
urgent FASTGET primitive. It is important to note that no failures

T. Ahmad et al.

were experienced and all messages received at base stations were
transferred to the server. At a user level user got SMS back for all
the functions they performed. They got SMS for SELL immediately
because the local component of the application gives the response
immediately and then executes the SLOWPUT operation while the
response for BUY operation is sent only after response from cloud
to maintain consistency.

IVR Application: File upload is a common operation of the
voice-based applications. Figure 3a shows the CDF of the time it
takes for different SLOWPUT requests on the New York-based node.
Figure 3b shows the queue and how requests are processed for the
SLOWPUT primitive for the base station in Ghana. Figure 3 shows
that SMS-based applications will work faster than the file-based
applications as SMS-based messages are smaller than files. It also
shows that file-based applications can slow down the SMS-based
applications. This is true as both are placed in a common queue for
processing, and servicing larger files is more time consuming than
servicing smaller SMSs.

Early User Experiences: The Fishline application is being cur-
rently used in Nicaragua by various users to advertise through
SMS in the local community. Several advertisements have been
sent out using the service and many users have responded back to
most advertisements. More businesses and fishermen are showing
interest in enrolling for this service. As a simple example, when
we sent out this broadcast message: “messages sent on 30000 are
part of a new service pearl cel wants to offer to businesses and
institutions to publicize info. If interested reply ‘yes RP’ ”, we got
several positive responses from interested users including SMS re-
sponses like: “How could I do that?” . Performing a full fledged
impact study of the outcomes of the Fishline application on the
community is part of our future work. The P2P marketplace appli-
cation has been tested with cohorts of farmers and traders from the
local community to perform BUY/SELL transactions. The IVR-based
social media application was inspired by the success of voice-based
citizen journalism platforms like Polly [17] and shows how one can
build such voice-based applications to function effectively in rural
contexts in an intermittency-aware manner.

5 ACKNOWLEDGEMENTS

We thank Zohaib Jabbar, Fareeha Amjad, Tiffany Tong, Yasir Zaki
and other members of the Center for Technology and Economic
Development (CTED) in Abu Dhabi and CTED Kumawu members
in Ghana for their help in this work. We also thank Leslie Green-
guard, David Mordecai, Samantha Kappagoda and Thomas Pruett
for their support and encouragement. We also thank the anonymous
reviewers for their reviews which helped in improving this paper.
This work was partly supported by the NYU Abu Dhabi Research
Institute, the Center for Technology and Economic Development
(CTED) in NYU Abu Dhabi and a CTED-Kumawu Research Grant
in NYU Ghana. This work was also partly supported by a Cisco
research award.

REFERENCES

[1] 2017. Facebook OpenCellular. (2017).
https://code.facebook.com/posts/1754757044806180/
introducing-opencellular-an-open-source-wireless-access-platform

[2] 2017. GSM LiteCel by Nuran Wireless. (2017). http://nuranwireless.com/products/
gsm-litecell/


https://code.facebook.com/posts/1754757044806180/introducing-opencellular-an-open-source-wireless-access-platform
https://code.facebook.com/posts/1754757044806180/introducing-opencellular-an-open-source-wireless-access-platform
http://nuranwireless.com/products/gsm-litecell/
http://nuranwireless.com/products/gsm-litecell/

GreenApps: A Platform For Cellular Edge Applications

[10]

[11

[12

[13]

2017.
2017.
2017.
2017.

Memcached. (2017). https://memcached.org/

OpenBTS. (2017). www://www.openbts.org/

Osmocom. (2017). https://osmocom.org/

Range Networks. (2017). http://www.rangenetworks.com/

2017. RHizomatica Community Base Station. (2017). http://rhizomatica.org/
2017. Sysmocom. (2017). https://www.sysmocom.de/

Talal Ahmad, Shankar Kalyanaraman, Fareeha Amjad, and Lakshmi Subramanian.
2015. Solar vs diesel: where to draw the line for cell towers?. In Proceedings of the
Seventh International Conference on Information and Communication Technologies
and Development. ACM, 7.

Aditya Dhananjay, Ashlesh Sharma, Michael Paik, Jay Chen, Trishank Karthik
Kuppusamy, Jinyang Li, and Lakshminarayanan Subramanian. 2010. Hermes: data
transmission over unknown voice channels. In Proceedings of the sixteenth annual
international conference on Mobile computing and networking. ACM, 113-124.
Vijay Gabale, Ashish Chiplunkar, Bhaskaran Raman, and Partha Dutta. 2011.
DelayCheck: Scheduling Voice Over Multi-hop Multi-channel Wireless Mesh
Networks. In COMSNETS.

Vijay Gabale, Bhaskaran Raman, Kameswari Chebrolu, and Purushottam Kulka-
rni. 2010. LiT MAC: Addressing the Challenges of Effective Voice Communication
in a Low Cost, Low Power Wireless Mesh Network. In Proceedings of the First
ACM Symposium on Computing for Development (ACM DEV ’10). ACM, New York,
NY, USA, Article 5, 11 pages. DOI:https://doi.org/10.1145/1926180.1926187
Kurtis Heimerl, Shaddi Hasan, Kashif Ali, Eric Brewer, and Tapan Parikh. 2013.
Local, sustainable, small-scale cellular networks. In Proceedings of the Sixth Inter-
national Conference on Information and Communication Technologies and Devel-
opment: Full Papers-Volume 1. ACM, 2-12.

COMPASS ’18, June 20-22, 2018, Menlo Park and San Jose, CA, USA

[14] Michael Paik, Ashlesh Sharma, Arthur Meacham, Giulio Quarta, Philip Smith,

[15

[16

[18

[19

John Trahanas, Brian Levine, Mary Ann Hopkins, Barbara Rapchak, and Lak-
shminarayanan Subramanian. 2009. The case for SmartTrack. In Information
and Communication Technologies and Development (ICTD), 2009 International
Conference on. IEEE, 458-467.

Rabin Patra, Sergiu Nedevschi, Sonesh Surana, Anmol Sheth, Lakshminarayanan
Subramanian, and Eric Brewer. 2007. WiLDNet: Design and Implementation of
High Performance WiFi Based Long Distance Networks. Proceedings of NSDI
2007 (2007).

Bhaskaran Raman and Kameswari Chebrolu. 2005. Design and Evaluation of a
new MAC Protocol for Long-Distance 802.11 Mesh Networks. In ACM MOBICOM.
Agha Ali Raza, Mansoor Pervaiz, Christina Milo, Samia Razaq, Guy Alster, Ja-
hanzeb Sherwani, Umar Saif, and Roni Rosenfeld. 2012. Viral entertainment as
a vehicle for disseminating speech-based services to low-literate users. In Pro-
ceedings of the Fifth International Conference on Information and Communication
Technologies and Development. ACM, 350-359.

Sonesh Surana, Rabin Patra, Sergiu Nedevschi, Manuel Ramos, Lakshmi-
narayanan Subramanian, Yahel Ben-David, and Eric Brewer. 2008. Beyond Pilots:
Keeping Rural Wireless Networks Alive. Proceedings of NSDI 2008 (2008).
Mariya Zheleva, Arghyadip Paul, David L. Johnson, and Elizabeth Belding. 2013.
Kwiizya: Local Cellular Network Services in Remote Areas. In Proceeding of the
11th Annual International Conference on Mobile Systems, Applications, and Services
(MobiSys ’13). ACM, New York, NY, USA, 417-430. DOI :https://doi.org/10.1145/
2462456.2464458


https://memcached.org/
www://www.openbts.org/
https://osmocom.org/
http://www.rangenetworks.com/
http://rhizomatica.org/
https://www.sysmocom.de/
https://doi.org/10.1145/1926180.1926187
https://doi.org/10.1145/2462456.2464458
https://doi.org/10.1145/2462456.2464458

	Abstract
	1 Introduction
	2 GreenApps Architecture
	2.1 Enabling Edge Application Support
	2.2 Identities and Distributed Applications
	2.3 Syncronization Primitives

	3 Applications
	3.1 Fishline
	3.2 P2P Transactions Marketplace in Ghana
	3.3 IVR-Based Social Media

	4 Application Performance and Experiences
	5 Acknowledgements
	References

