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ABSTRACT
Millimeter wave (commonly known as mmWave) is enabling
the next generation of last-hop communications for mobile
devices. But these technologies cannot reach their full po-
tential because existing congestion control schemes at the
transport layer perform sub-optimally over mmWave links. In
this paper, we show how existing congestion control schemes
perform sub-optimally in such channels. Then, we propose
that we can learn early congestion signals by using end-to-
end measurements at the sender and receiver. We believe
that these learned measurements can help build a better
congestion control scheme. We show that we can learn Ex-
plicit Congestion Notification (ECN) per packet with an
F1-score as high as 97%. We achieve this by doing unsuper-
vised clustering using data obtained from sending periodic
bursts of probe packets over emulated 60 GHz links (based on
real-world WiGig measurements), with random background
traffic. We also describe how the learned values of ECN can
be utilized for rate estimation.
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1 INTRODUCTION
Millimeter wave (mmWave) radio bands like 60 GHz band,
28 GHz band and 39 GHz have unique properties like high
oxygen absorption, diffraction and penetration losses. On
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the other hand, we already have new short-range wireless
specifications that are poised to power the next generation
of access networks e.g Wireless Gigabit (commonly known
as WiGig [2]) and 5G new radio (commonly known as 5G-
NR [8]).However, the protocols available at transport layer
do not fully harness the potential of these lower layer specs.

We make two high level contributions in this paper: i)
we show that existing congestion control schemes fail over
mmWave, and ii) we show that we can learn early signals
of congestion from the network using end-to-end feedback,
which can then potentially be used to build a sketch of a
novel congestion control algorithm.

Congestion Control over 5G: The congestion control schemes
of the past are not completely equipped to handle the highly
volatile mmWave channels. The de facto congestion control
protocol is TCP Cubic for most of the traffic. TCP Cubic
treats packet loss as the signal for congestion in the network.
When we introduce link outages and capacity variations,
which are fairly common in mmWave channels, Cubic fails.
When bottleneck buffers are large, loss-based congestion con-
trol (like Cubic) keeps them full, causing bufferbloat, and
when the buffers are small, loss-based congestion control can
further lower throughput by multiplicative decrease on packet
loss [4]. There have been new congestion control schemes that
have been proposed to overcome Cubic’s limitations. We also
evaluated the performance of these schemes over mmWave.
We show in § 3 that the newer congestion control schemes
such as Verus [16] and Sprout [14], which are supposed to
overcome TCP’s limitations in highly varying channels (cel-
lular), also prove ineffective.

Learning Congestion State over 5G: Explicit Congestion
Notification (ECN) is a bit that is marked in the packet
by certain routers and switches when the buffer occupancy
exceeds a certain threshold. This feedback eventually reaches
the sender, which can then modify its sending rate as in
DCTCP [1]. Unfortunately, most routers and switches do not
mark the ECN bit, and even if this function is available, it is
not always enabled in the network [13]. Hence, we attempt to
answer the following question: Can we learn the ECN signal
for each packet using end-to-end measurements at the sender
and receiver? We show that we can indeed learn ECN marker
with an F1-score as high as 97% at a per packet level. We
discuss how this can be used to create a better congestion
control scheme for mmWave links.
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(a) Sprout throughput and delay over WiGig

(b) Verus throughput and delay over WiGig

Figure 1: Throughput and delay over WiGig. The top plot shows the
fluctuating channel capacity (light brown shaded region), the actual
observed throughput (black dotted line), and the bottom plot shows
the observed one-way delay in the same period.

2 BACKGROUND AND RELATED WORK
The millimeter wave bands have the potential of enabling
high throughput communication with the additional caveat of
rapidly fluctuating links over few wavelengths. Due to the high
carrier frequency, mmWave communications suffer from huge
propagation loss, reducing the coverage area of base stations.
In addition to this, due to weak diffraction ability mmWave
communications are sensitive to blockage by obstacles such
as humans and furniture [10]. Legacy congestion control
protocols such as TCP and its variants are known to suffer
from a number of inefficiencies in these kinds of scenarios. For
example, TCP Cubic suffers from the bufferbloat problem
due to large window sizes, which results in extremely high
packet delays in cellular networks [14, 16].

Shortcomings of legacy TCP over highly varying cellular
channels have led to newer delay-based congestion control
protocols like Sprout [14] and Verus [16] that were specifically
designed for such channels. While Sprout focuses on the prob-
lem of reducing self-inflicted queuing delays and uses packet
inter-arrival times to detect congestion, Verus was designed
to create a balance between packet delay and throughput.
Recently, PCC Vivace [5] has been shown to react well to
changing networks while alleviating the bufferbloat problem.

PCC Vivace leverages ideas from online (convex) optimiza-
tion in machine learning to do rate control. There has been
other work on learnability of congestion control [12] that are
more general, while we specifically try to learn an ECN signal.
There has also been prior work on using machine learning to
improve congestion control for wireless channels [7]. Compar-
ing our approach against such similar works will be part of
future work.

3 CONGESTION CONTROL OVER 5G
We explored the performance of two different algorithms,
Verus [16] and Sprout [14], using a setup similar to Pan-
theon [15] local tests. We chose these two as they both are
designed for highly varying cellular channels and react quickly
to changing channel conditions. We used a Mahimahi [9]
linkshell to emulate an mmWave link from a trace file that
was generated using a real WiGig router leveraging the ap-
proach shown in §5.1. The underlying conditions used to
produce the highly varying trace were random movements of
humans between a WiGig sender and a receiver radio. The
trace used was 60 seconds long as we wanted to emulate a
long running data flow. There was no background traffic so
as to see the full potential of these algorithms.

Figure 1 shows the performance of these algorithms in
terms of achieved throughput and one-way queuing delay
experienced as we ran a single long running flow. The average
capacity of the trace was 51.6 Mbps. The queue used in these
experiments was a standard droptail queue and the size was
set to the bandwidth delay product (BDP). To calculate
the BDP, we used the maximum observed capacity value
of the link since the link is highly varying. We set the link
propagation delay to 20 ms using the Mahimahi delayshell.

Having similar design goals, both of them succeed in keep-
ing the average delay reasonably low, at 84 ms for Sprout
and 191 ms for Verus. However, neither is able to keep up
with the highly varying channel in terms of throughput, and
consequently the channel ends up being grossly underutilized
in both cases. Sprout is able to maintain an average through-
put of only 11.3 Mbps (21% utilization), while Verus does
slightly better at 17.1 Mbps (33% utilization). Sprout is not
agressive in ramping up because it tries to keep the delay
low. Verus is more aggressive than Sprout but is still not
aggressive enough for mmWave links.

While delay-based algorithms like Verus and Sprout have
been shown to work on certain highly varying links, clearly
they have their limitations, and those limitations become
even more stark at the range of mmWave, where channel
fluctuations are extremely rapid. Thus we realize that we
need more than a purely delay-based approach to congestion
control in mmWave scenarios. In the past, other types of
feedback, such as an Explicit Congestion Notification (ECN)
marking in the network have been used to devise improved
congestion control mechanisms[1]. However, since such signals
require specialized hardware, we explore the ability to predict
such early signals of congestion using a purely data-driven



approach, from end-to-end delay and packet arrival time
information observed at the sender.

4 LEARNING ECN
We showed in the last section that end-to-end delay feedback
takes us only so far in the case of highly fluctuating network
conditions, and thus we need a different kind of feedback
from the underlying network. In-network congestion feedback
like an Explicit Congestion Notification (ECN) [11] can de-
liver extra information with each packet received and has
been shown to improve performance of congestion control
algorithms in specialized network environments [1]. ECN uses
two bits in the IP header to mark congestion in ECN-enabled
routers. The high-level idea is that ECN-enabled routers can
set the Congestion Experienced (CE) codepoint (this is when
both the ECN bits have a value of 1) in the IP header of
packets instead of doing active queue management. For ex-
ample, a Random Early Detection (RED) queue [6] marks
the CE codepoint in packets with a probability 𝑝 if the queue
size increases beyond a threshold. In case of DCTCP, CE
codepoint is marked by a router if the queue reaches certain
threshold.

We propose to learn the ECN value for each packet using
an unsupervised learning approach. For our setup we assume
the ECN is marked 1 with a probability of 100% if the router
buffer is filled more than 50%. So all of the packets correlating
with that buffer state are assumed to have ECN 1.

We have a simple setup similar to § 3 where we have a
sender and receiver communicating with each other over a
WiGig channel. The sender wishes to send data at the maxi-
mum rate possible without causing congestion in the network.
In addition, there exist some background traffic in the link,
which is unknown to the sender. We send probe bursts of
packets into the network and try to use the measurements
from these probes to predict the value of ECN for each packet.
In particular we use the RTT and inter-arrival time (IAT) of
each packet to do the prediction. While the RTT is readily
available at the sender, the IAT is not, and so we need to
make some assumptions to compute the IAT.

The sender sends a packet with a sequence number, and
the receiver sends an acknowledgment back for that sequence
number. We assume that it is possible to piggyback the IAT
value in the acknowledgment, and that the link between the
receiver and sender is not saturated and error-free. When
sender receives an acknowledgment for a sequence number, it
calculates the RTT and saves the inter-arrival time sent by
the receiver. It then uses these values and same data from
previous sequence numbers to estimate whether the current
packet was in a congested buffer.

4.1 Learning algorithm
Given a particular kind of network and some random back-
ground traffic, we use small bursts of probe packets at periodic
intervals to learn the value of the ECN at time 𝑡𝑖. We assume
to have some limited information available from 𝑛 number of
earlier times 𝑡𝑗 , where 𝑗 < 𝑖, when previous packets belonging

to the probe were received. The amount of historical data
stored is bounded by memory constraints.

As mentioned before, we rely on two quantities for each
historical packet at an earlier time 𝑡𝑗 : the Round Trip Time
(𝑑𝑗) of a previous packet, and its inter-arrival time 𝑡𝑗 −
𝑡𝑗−1. The ECN bit, �̂�𝑖 at time 𝑡𝑖, is essentially modeled as a
mapping from a multiple of these two quantities computed
at several past time instances, to 0 or 1 labels (congestion or
no congestion). This is a 2-class classification problem, for
which supervised learning algorithms, such as Support Vector
Machines (SVM), can be applied. However, from a practical
viewpoint, the training information required for supervised
learning algorithms may not be available at the sender. For
that reason, we exploit unsupervised-learning solutions. We
used the 𝐾-means clustering algorithm to study its potential
to learn congestion and no congestion for each transmitted
packet.

Given that we have information stored for 𝑛 past probe
packets received, an important parameter in our prediction
model is the history length (𝐻). This is the number of past
occurrences of received probe packets to use as input for
prediction. Congestion builds up in a router over a period of
time, which can be very small or very large. Therefore, we
believe it is important to experiment with varying the history
length in order to avoid either over-fitting or under-fitting the
model. The longer the history length, the larger the amount
of past packet information that is used in the prediction, and
consequently the larger the number of parameters to estimate.
Hence using a history greater than 1 may also help to ensure
that the problem is not over-determined thus potentially
improving learning performance.

5 EVALUATION AND RESULTS
5.1 Experimental Setup
To collect the WiGig traces, we used the NETGEAR Nighthawk
X10 wireless router, which implements the 802.11ad stan-
dard [3] for 60 GHz channels. We used an Acer TravelMate
P648 which comes with a WiGig enabled network card. We
started a UDP sender at a Linux machine connected to the
wireless router over Ethernet, and used it to send UDP pack-
ets at a very fast rate to the IP address of the laptop. A
receiver at the laptop recorded the timestamp every time
a packet was received. We used the log from the laptop to
record the inter-arrival times between the packets. This time
was used to create a trace file that is afterwards used as the
channel trace in the Mahimahi [9] linkshell emulator. The
trace files contains the number of slots that are available
in any given millisecond to send a packet. The linkshell in
Mahimahi acts as a controlled router that queues packets and
sends them at the desired rate as dictated by the trace file.
The traces gave us the ability to run several algorithms and
compare the performance across traces. The same approach
has been used by Verus [16] and Sprout [14] in the past.

We collected the WiGig traces under different scenarios. We
show these traces here to demonstrate how a WiGig channel
looks like under different scenarios. There were sometimes



Figure 2: Capacities of various channels

long unexpected disconnects in the collected traces. To make
sure that these long disconnects were not affecting our whole
analysis, we removed disconnects from traces if they were
longer than 3 seconds. Figure 2 shows the capacities of the 4
traces we used. The traces are described below.

∙ The fan_running trace shows the capacity when we
kept the laptop and router on a desk inside a room to
collect a long stable trace. The slight instability in this
trace can be due to a running fan that was between
the router and the laptop. The initial instability can
be attributed to the human who started the trace
collection script before moving away from the laptop.

∙ The human_motion trace shows the capacity of the link
where we introduced human interference in between the
router and the receiving laptop. As can be observed, the
channel capacity is greatly affected by the attenuation
due to the human body.

∙ The stationary trace shows the capacity of the trace
where the laptop was placed next to the router. The
𝑦-axis shows that this is the highest capacity trace
with an average capacity of 193 Mbps. This trace was
collected in a different indoor environment compared to
the previous ones (fan_running and human_motion).

∙ The walk_and_turn trace shows the channel capacity
when a person holding the laptop moves towards the
WiGig router and then turns. This trace was smaller in
length so it was concatenated multiple times to produce
a longer trace to emulate a long running flow.

After collecting these traces, we emulated these links in the
Mahimahi linkshell emulator [9], where a realistic propaga-
tion delay of 20 ms was added. Each time we emulated a
link, we sent packet probe bursts of length 10 packets at

periodic intervals with random Poisson traffic in the back-
ground. These packet probe bursts were sent by a sender. We
varied two parameters – the interval between two consecutive
probe bursts (burst interval), and the mean bit rate of the
background traffic. We show results with two burst interval
values, 5 ms and 10 ms, and the mean value of background
traffic rate was between 620 and 680 Mbps. These high send-
ing rates were chosen in order to reduce the skew between
number of congestion instances and number of no-congestion
instances in the training data. With background traffic rate
set in the ballpark of the channel capacity, the amount of skew
was as high as 1:1000, which resulted in bad performance
by the ML algorithm in predicting instances of congestion
correctly. Hence we kept increasing the rate until the amount
of skew became acceptable. The worst skew in the current
setup was approximately 1:10. We collected comprehensive
data to analyze the clustering performance for each link by
emulating it several times.

The dataset for the clustering model was built in the
following way. From the output trace of the emulation for 60
seconds, we computed the ECN at every millisecond since
the start, from the queue occupancy (recall from §4 that we
mark ECN as 1 in that millisecond if the buffer occupancy
was 50% or more). At every millisecond, for history length
𝐻, the RTT and IAT were taken for 𝐻 immediately previous
instances of packet arrivals as the input features to predict
congestion at the current time. The total number of features
were thus 2𝐻 for history length 𝐻. All such samples were
collected in a dataset for each value of 𝐻 and channel type.
A single dataset had approximately 25000 feature-label pairs;
the exact number depended on the history length 𝐻.

5.2 Learning congestion using clustering
After analyzing the datasets obtained using the procedure
described above, we made two observations. First, the RTT
and IAT samples were on different scales. Secondly, most of
the samples were confined to small ranges of values. Hence we
applied the following preprocessing steps to the data before
running the clustering.

(1) The feature values were transformed by a simple expo-
nentiation, so that those having small values remain
small, while the ones larger get separated from the rest.
The idea of this transformation was to effect better
separation of those samples indicating congestion from
the rest.

(2) Outliers detected using a fixed deviation from the mean
were removed. We experimented with deviation of 𝜎,
3𝜎 and 5𝜎, where 𝜎 represents the standard deviation.
Outliers correspond to those samples that have large
feature values, and are thus more easily separable.

(3) Finally, the resulting dataset was scaled so that RTT
and IAT samples become comparable. Each feature was
scaled to be in [0, 1]. Additionally, we assign RTT and
IAT different relative weights, 𝛽 and 1 − 𝛽 respectively,
where 𝛽 ∈ [0, 1].



(a) fan_running

(b) human_motion
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(d) walk_and_turn

Figure 3: Illustration for equal weighting of RTT and IAT for all
channel types for history 𝐻 = 1 and minimal outlier removal. The red
markers indicate ECN=1, and blue markers ECN=0. The illustration
is to show some of the natural separation in the feature space.

We ran the 𝐾-Means clustering with 𝐾 = 2 separately for
each burst interval, history length (from 1 to 4) and each
channel type. We also experimented with the weight 𝛽 in
steps of 0.1 from 0 to 1. For each setting, we set aside 25%
of the dataset for testing. Once a clustering model was learnt
on the training set, it was applied on the testing set. One of
two resulting clusters was assigned to 0 and other to 1. The
assignment was done in such a way as to maximize amount
of overlap with the ground truth. Following this, we are able

Table 1: Percentage of the average F1-scores of unsupervised learn-
ing

Burst Interval
5 ms 10 ms

Channels History History
1 2 3 4 1 2 3 4

fan_running 94 94 94 94 94 94 94 94
human_motion 96 97 97 97 94 94 94 94
stationary 97 97 97 97 96 97 97 97
walk_and_turn 95 95 95 95 94 94 94 94

to study clustering performance using the same metrics used
for classification – precision, recall and F1-score.

Table 1 shows the best prediction result for each channel,
history length and burst interval. Owing to space constraints,
we report the F1-score alone and not the precision or recall.
Each reported F1-score in the table above is the average of two
F1-scores, one for each of the two classes ECN=0 and ECN=1.
Since our objective is to analyze the potential performance
of using an unsupervised method for ECN prediction, each
entry is the maximum score across all values of 𝛽. Figure 3
illustrates clustering for history 𝐻 = 1 when feature space is
two-dimensional and when 𝛽 = 0.5. We note that we observe
F1-scores higher than 71% even in a default setting where
there is no relative weighting.

The clustering algorithm, in all cases, is able to learn the
ECN with high accuracy. In addition, we can observe that, for
our datasets, similar performance can be achieved irrespective
of the history length. Finally, the results also indicate that the
scenario with smaller inter-burst interval (i.e. 5 ms) brings
about slightly better results. This last observation is due to
higher congestion when the interval between traffic bursts is
reduced, which in turn reduces the imbalance between the
numbers of samples in each of the two classes, ECN=0 and
ECN=1.

5.3 Using learned ECN
We have shown that we can learn the ECN signal for each
packet with a reasonable accuracy. This learned signal can
be used as an indicator of congestion building up in the
network. We wanted to see if our learned signal can give us
a congestion window that highly correlates with the capacity
in the network at that time. To this end, we started with the
DCTCP algorithm, which is designed specifically for data
centers and uses the ECN. We decided to replace the true
ECN signal with the learned ECN signal in the control loop
of the algorithm. If the learned ECN can give us a congestion
window that correlates well with the channel capacity, we can
say that learned ECN can be used as a replacement for the
true ECN. A high positive correlation would mean that we
have a sending rate that increases and decreases proportional
to the channel capacity.



For this simulation we assumed that we are in the con-
gestion avoidance phase. Recall that congestion avoidance is
the phase after slow start and TCP behavior is Additive In-
crease and Multiplicative Decrease (AIMD), for no-congestion
and congestion respectively. In congestion avoidance phase,
DCTCP does additive increase in the case of no congestion,
while doing a fractional decrease based on ECN in the case
of congestion. The equation for fractional decrease is: cwnd
= cwnd ×

(︀
1 − 𝛼

2
)︀
, where 𝛼 is the weighted fraction of ECN

marked packets in the last RTT. When 𝛼 is close to 0 (low
congestion), the window is only slightly reduced. When 𝛼
is zero, the DCTCP rate only increases by the Maximum
Segment Size (MSS), which is not desirable for mmWave
channels but we still use it to demonstrate how learned ECN
signal can be used.

We start our simulation with an arbitrary congestion win-
dow post slow start phase. After that, we calculate conges-
tion window using the fraction of learned ECN packets in a
time window (simulating RTT). We then compute the cross-
correlation of the congestion window with the actual channel
capacity. We observed a maximum Pearson correlation coeffi-
cient of 0.622 between the congestion window and channel
capacity. This means that the congestion window shows de-
cent correlation with the channel capacity and can be used
to track channel capacity over time. DCTCP is not the per-
fect fit for mmWave channels because it has been designed
for data centers but the correlation value indicates that the
learned ECN may be a powerful signal for congestion control.
We believe that we can get an even higher correlation if we
replace the additive increase with a more aggressive ramp-up
function. Determining the exact function that would work
for mmWave links remains part of future work.

6 CONCLUSION
Our results are a first attempt at solving the problem of
learning congestion state of network, and we believe that
these results are very encouraging. The fact that we are able
to use unsupervised learning and obtain such high accuracy
shows the immense potential of this approach to replace
or augment traditional ECN and other congestion notifica-
tion methods. In our experiments, we also tried other ML
algorithms such as logistic regression and SVM, but found
that a simple unsupervised learning approach like 𝐾-means
performs the best. In future work we intend to explore the
use of reinforcement learning, as well as looking at the exact
control loop for congestion control and online ECN learning.
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