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ABSTRACT
Disease surveillance is critical for mobilizing health care resources
and deciding on isolation measures to contain the spread of in-
fectious diseases. Because ground truth signals of rare and deadly
diseases are sparse, it can be useful to enrich surveillance systems us-
ing measures of social and environmental factors which are known
to influence the spread of a disease. One approach to measure such
factors is by using real time news streams. In this study, we model
the epidemiological transmission of the Middle Eastern Respiratory
Syndrome (MERS) disease during the outbreak that occurred from
2013 to 2018 in the Arabian peninsula. Using the GDELT news
event database, we show that conflict related signals allow us to
reconstruct the time series of newly infected cases per week. This
reduces the residual sum of squared errors by a factor of 3.36 as
compared to a standard epidemiological model. We also capture
interpretable time-sensitive factors which illustrate the importance
of using real time news stream to model the evolution of a disease
such as MERS and facilitate early and effective policy interventions.

CCS CONCEPTS
•Applied computing→ Life andmedical sciences; • Informa-
tion systems → Specialized information retrieval; • Computing
methodologies → Feature selection; Learning linear models; • So-
cial and professional topics → Health information exchanges.
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1 INTRODUCTION
The Middle Eastern Respiratory Syndrome - Corona Virus (MERS-
CoV) disease is a new illness caused by a type of corona virus found
in the Arabian peninsula since 2012. While most corona viruses
have only cold-like symptoms, most people with the MERS virus
had severe respiratory illness, gastrointestinal problems, sometimes
leading to death [9]. As of end of September 2018, there were a
total of 2260 laboratory confirmed cases and 803 associated deaths
from MERS [20]. Despite the decreasing number of new cases over
the years, WHO maintains its global risk assessment as it is mainly
acquired from dromedary camels, a popular domesticated animal.
There have been 218 instances of exported cases where contact with
animals happened in the Middle East, but symptoms later manifest
in the home countries of travellers. The difficulty in tracking MERS
stems from the fact that, the dromedary camels show no symptoms
when they are infected by MERS, making it harder to isolate them.

Early detection of MERS outbreaks is critical for health care
resource allocation similar to diseases like malaria, dengue [1]
and Ebola [6]. On the ground interventions can be mobilized in
a more precise manner if the health agencies understand the lo-
cal geographic, cultural and socio-economic conditions in a much
fine-grained manner. However, structured signals on these aspects
are available yearly or quarterly through extensive surveys con-
ducted by organizations like WHO and UNICEF [24], making it
difficult to apply traditional machine learning techniques to predict
outbreaks, which usually span a few weeks. For communicable
diseases specifically, the mobility patterns of people and animals
play an important role in determining the risk of an outbreak in a
region and measuring this in regions with low access to tracking
technology can be non-trivial.

In our study, we measure the factors that impact the propagation
of the disease based on their mentions in the news. Specifically, we
hypothesize that mobility patterns and access to local health care
is impacted due to the presence of conflict within a region. This,
in turn, influences the risk of a disease outbreak in a region. We
use real time news streams such as GDELT [17] and the Uppsala
Conflict data program [13] that aggregate statistics of conflict re-
lated death counts within a given geography. We use this localized
knowledge in addition to a traditional disease transmission model
for MERS [4] which estimates the susceptible, infected and recov-
ered (SIR) number of people in a population based on the instrinsic
characteristics of the disease as studied in a hospital. We extract
interpretable variables, by running Granger Causality [15] tests
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for each of the hypothesized 56 news based indicators and keep
only the ones which are statistically significant. We then embed the
trained SIR model with the Granger-causal variables in a multivari-
ate auto-regressive linear model to predict future infected number
of cases and deaths.

Using sparse but rich conflict signals from the GDELT news
database, our disease outbreak model is able to reconstruct the time
series of actual infected cases as reported by WHO with a sum of
squared errors which is 3.36x lower than using the standard MERS
epidemiological model alone. The news based indicators which are
most influential in our model represent the number of people killed,
wounded and affected due to conflict in the regions of Lebanon,
Kuwait, Egypt and Jordan. Some of these factors negatively influ-
ence the population mobility patterns and have disparate influence
across regions. In addition to the variations of coefficients for news
based factors, we use sensitivity analysis and Granger Causal [15]
time lags to interpret how each of these factors affect the timing
and scale of the MERS outbreak in the middle east from 2013-2018.

2 RELATED WORK
The environmental, animal and human transmission model [4] pro-
vided an understanding of how we could initialize the parameters
for the transmission rate in the SIR Model. This work analyzed
transmission patterns in a hospital in Saudi Arabia and identified
the parameters of the SIR model. Apart from human-human trans-
missions, this model also incorporates animal-human interaction,
especially from dromedary camels which serve as a large reservoir
for the transmission of this disease. Incorporating this transmission
alongside the human transmission rate significantly improves the
accuracy of the model. The WHO currently educates people in the
region to stop using animal products which could have come in
contact with these camels when an outbreak is imminent.

The Dynamical Transmission Model [26] provided a corrobora-
tion to our parameter estimates. The sensitivity analysis provides
an overview as to how the parameters would fluctuate on each
iteration, which is in line with the modeling based on [4]. These
analyses determined the changes that a parameter has on a model
and the key drivers in a model(this happens to be the transmission
rate b)

News based indicators have been used to predict man-made dis-
asters and other natural events which are worthy of global attention
previously in [18]. The tool developed was used to aid journalists
in tracking events of consequence from Twitter streams [14]. In our
work, we rely on established news sources and their aggregations.
Parsing social media feeds would require sophisticated tools to filter
false positives and would remain the focus of our future research
direction.

Other auxiliary data like internet search history [12] and the web
[5] have been used for disease surveillance, but the limitations of a
fully unsupervised system without validation can cause spurious
correlations as noted in [16]. A more purposeful and dedicated
system built for disease tracking have also been deployed in real
world systems as shown in [1, 8] rely on time series of structured
data collected by specialists who were trained for this specific
purpose. In this work, we try to take a combined approach [10, 27]
by relying on aggregated news data which is not only easy to scale,

but also validated by tools known to journalists and conflict trackers
like the Uppsala conflict program. Thus, we aim to extract valid
signals from a large news stream corpora to better understand
disease transmission properties for MERS.

3 BACKGROUND
In this section, we elaborate on the specifics of the MERS disease
and motivate the need of news based modeling to overcome the
challenges of addressing sparsity constraints in diseases like MERS.
The hypothesis wewill motivate in this section is that sparsity of on-
the-ground signals relevant to disease modeling can be overcome
by augmenting events from news which impact the migration and
hence the disease propagation patterns indirectly. Specifically, we
explore the scenario where conflict events impact the disease mod-
eling of MERS in the Middle Eastern countries like Saudi Arabia,
Kuwait, Lebanon, Egypt is presented here.

3.1 MERS
The Middle East Respiratory Syndrome is a respiratory illness
caused by a coronavirus (MERS-CoV) and shows symptoms like
fever, cough and shortness of breath. Close to 3-4 people who were
infected have died of MERS related complications [9]. Although the
disease was first reported in September 2012 in Saudi Arabia, it has
since spread across the globe. In 2015, the largest outbreak outside
the Arabian peninsula happened in South Korea and was traced
back to a traveller from the middle east. MERS symptoms have
been varied based on the risk factors like diabetes, heart disease or
weakened immune system. While severe complications including
pneumonia or kidney failure have led to death, people who have
shown milder symptoms or no symptoms have recovered. The in-
cubation period of MERS is usually 5-6 days, but larger variations
of 2-14 days have also been observed. This means that people who
have come in contact with the virus can show no symptoms for up
to 1-2 weeks [9]. This makes detecting MERS extremely difficult as
it is known to have been transmitted through close contact with
an infected person in addition to infected animals like dromedary
camels, a popular animal for transportation in the middle east. Thus,
10 countries in the Arabian peninsula and 17 countries outside it
have seen more than 2200 cases of MERS and there continues to be
a threat of an outbreak.

3.2 Data Sparsity
As MERS is extremely hard to detect during the incubation period,
many patients who show milder symptoms might go untested and
can potentially infect people who have a higher risk of developing
severe complications. Thus, the number of actual cases of MERS
is harder to estimate due to lack of resources for testing and a
lack of awareness. Thus, WHO and other health agencies rely on
laboratory confirmed cases which form an extremely sparse data
source. This will form the ground truth data in our analysis. Since
the reports by the disease outbreak team by WHO are carefully
cross-checked, it can be weeks or even months before the actual
data is available for analysis. The reports are published weekly and
sometimes fortnightly on the WHO’s website [19] and is released
widely. This limits the granularity of our analysis and rules out any
real time analysis, daily or less based on streaming signals.
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News signals about conflict are also considerably sparse with
most coverage in the news relying on local sources that makes ag-
gregation of data time-consuming. Press releases appear in batches,
often with aggregate numbers over a longer time window. However,
even such sparse news reports capture rich signals of conflict which
can be specifically useful to predict the impact on human migration.
For example, initial death counts from a conflict gets reported on
the day of the event, but the actual numbers are usually updated
once more information is learnt and the corresponding statistics are
updated. Relying on such sparse corrected sources is much useful
than trying to parse all the available data, which can contain false
information. We use such rich time series which are curated and
verified by journalists and agencies on the ground for our analysis.

Given these sparsity constraints, we aim to reconstruct the time
series of the actual number of infected MERS cases based on richer
signals extracted from domain-specific knowledge about conflict
and the corresponding limited data in the news.

3.3 Disease Outbreak Modeling
Traditional disease outbreak modeling relies on developing a mathe-
matical model which denotes the rates of susceptibility (S), infection
(I) and recovery (R) of a disease. This is usually modeled as differ-
ential equations where the assumptions are embedded in the way
the equations are parameterized [4]. For example, for incurable
diseases, recovery (R) is not modeled at all and sometimes, more
than one type of infected and susceptible populations are tracked
separately based on the mode of disease propagation. These as-
sumptions stem from biological laboratory research which study
the intrinsic propagation properties of a disease. Once such a math-
ematical epidemiological model is constructed by enumerating the
number of compartments (S, I, R) and their interactions, its param-
eters are estimated and validated by a case study of a few specific
hospitals and their surrounding regions. A critical parameter esti-
mated through such case studies is the disease’s basic reproduction
number (Ro ), which signifies the risk of the disease becoming an
outbreak in a population [25]. An Ro > 1, indicates that unless
sufficient interventions are not carried out, there would be an expo-
nential increase in the infected population through a multiplicative
effect. Mathematically,

Ro = ρ(FV −1)

where ρ is the spectral radius of the next generation matrix, where
F is a column matrix denoting the rate of increase in population
of compartments and V is the rate of decrease in population from
compartments due to all other causes.

3.4 Sensitivity Analysis
Once the parameters of the differential equations are estimated, a
thorough sensitivity analysis of the parameters is done to under-
stand how changing any of these parameters affects the susceptible,
infected and recovered populations. Mathematically, this is done
using the sensitivity index relative to the reproduction number for
parameter p [23],

SIRo,p =
∂Ro
∂p

∗ p

Ro

News Signal 
Extraction

Disease Ground 
Truth Extraction

Epidemiological 
Model Parameters

News Influenced 
Disease Outbreak 

Modeling

Granger Causal 
News Signal 

Filtering

Figure 1: Outline of News-influencedDisease OutbreakMod-
eling

Higher the SIRo,p , higher is the impact obtained by interventions
that influence that parameter. One of the critical assumptions made
while such models are used in practice is that the surrounding
socio-economic, political and infrastructural environments of the
place where the study was conducted and where it is deployed are
identical for all matters concerning the spread of a disease. This
inherently ignores the changes in the availability of health care and
other such extrinsic factors. This deviation of the on-ground reality
and conditions of case studies significantly impacts the efficacy of
such models. Large data sets of these extrinsic signals are also not
readily available in the regions which are most at risk of disease
outbreaks.

4 METHODOLOGY
In order to overcome this compounded problem of not being able to
scale the epidemiology model to regions which are most at risk, due
to the lack of extrinsic knowledge of socio-economic conditions in
those fragile states, we resort to the news to extract meaningful
signals for disease modeling. However, not all event-indicators in
the news are relevant to disease modeling and careful inspection
of the variables chosen is required. Hence, we take a conserva-
tive approach and filter only those variables related to the factors
studied by social researchers for disease outbreak modeling and
prescribed byWHO [21]. As perWHO, conflict is the primary factor
that increases the risk of spread of infectious diseases like MERS.
Hence, early indicators of even such sparse conflict related signals
from news streams can significantly boost the accuracy of the SIR
model applied for infectious diseases. In the remaining sections, we
describe the methodology of our news based models and results.

Building news based models for disease outbreak modeling re-
quires information retrieval tools to extract signals from the news,
ground truth data from trusted sources, domain knowledge of the
disease captured in graphical models of disease propagation and
finally the prediction model which integrates all of this to produce
the final estimate of the number of people infected by the disease.
This is illustrated in Figure 1.
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4.1 News Extraction
In order to incorporate news based signals in our disease outbreak
prediction modeling to model extrinsic factors, we need to convert
the words present in the news to a suitable representation which
can capture the trends in the news. We hence chose to model it as
a time series of events and its relevant statistics which are relevant
to the disease. For example, for a regional conflict which is caus-
ing stress, we take into account the number of times that conflict
was mentioned in the news and its associated number of deaths,
wounded and sickened people. The definition of conflict can be
ambiguous depending on the stakeholders and this extraction is
conditioned on the domain expertise of the journalists in ensuring
that aggregate statistics are not duplicated. These are usually ex-
tracted from the news article where it was mentioned. Quite often,
the statistics reported are cumulative instead of the incremental
change required at time t and hence we needed to build suitable
tools and language filters to prune them.

In addition to raw news articles, we also used structured tables
which are curated by organizations like Uppsala Conflict Program
[22] to extract some of these relevant news signals. These are again
suitably filtered using data processing tools. Once these time series
were generated, they were normalized such that the time series
is centered. This is required so that the variations in raw values
across regions are comparable and are not dominated by the largest
value. Any time series prediction task does not usually converge
unless the time series is stationary and lack seasonal trends. To
remove such trends, it is common to take differences until the final
time series is stationary. However, in the case of sparse time series
where conflict occurs based on seasonal and other trends which
are not stationary, we resort to time series chunking. Each time
series chunk, denoted by a start and an end date corresponds to a
conflict episode and the time series within each episode is ensured
to be stationary. We use such time series chunks throughout our
prediction task.

4.2 Disease Ground Truth Extraction
Extracting ground truth of the number of cases and deaths associ-
ated to a disease can be quite controversial due to differing reports
in the news and medical agencies. We rely on trusted sources like
the UN, WHO to provide us with these estimates based on on-
the-ground healthcare personnel. Some of these trusted sources
provide data in the form of monthly reports or bulletins in the form
of natural language text. We parse this text and extract relevant
statistics like time, number of new cases and deaths reported for a
disease across regions. Extraction is done using regular expressions
as most of this text usually follows a template, which can be easily
reverse-engineered. This provides the time series of the ground
truth for the prediction task.

In order to take into account data outages and changes in tem-
plate, we utilized RSS feeds on the disease outbreak portals to cross
check the numbers extracted. These usually serve as efficient notifi-
cations of updates, but need to be monitored for changes undetected
by web scrapers. Scaling these scrapers to multiple sources and in
multiple languages remains out of scope for this task. However,
while inspecting the news articles cited in these trusted disease

outbreak sources, we usually noted that they were in the local lan-
guage. Incorporating signals from these would be immensely useful
for early-detection of outbreaks.

4.3 Epidemiological Modeling
Disease modeling based on rates of changes in population sizes at
different stages of a disease is a common mathematical modeling
approach. In this model, populations are compartmentalized and
the rate of transfer of individuals from one compartment to another
is modeled using differential equations. This can be easily visualized
in a graphical model with each node denoting a compartment and
the weights of the directed edges denoting the transfer rates. Each
compartment is semantically annotated with a stage in their expo-
sure to the disease like “susceptible”, i.e sub-population which is at
risk of getting the infection, “infected” who have the infection and
“recovered” who have either recovered or died from the infection.
In all such compartmentalized models, the population of the region
is assumed to be constant and transitions between compartments
have Markov assumptions.

This makes it easier to denote the graphical model in terms of
differential equations with the rates of transfer and the nodes in
the model being specific to a disease. MERS being an infectious
disease has been studied by epidemiologists and several models
have been proposed including SISI and SIR models [26]. SISI model,
for example has two types of infections (primary and secondary)
in two regions, where primary infections occur from contact with
animals and secondary infections occur from contact with other
infected humans in hospitals. The corresponding susceptible (S)
and infected (I) populations are estimated using links from S →
I → S → I .

In our modeling, we refer to the SIR (Susceptible, Infected, Recov-
ered) model, a standard mathematical model which predicts how a
disease propagates in a closed population over time. It represents
the SIR population numbers as a function of time, and describes
the time line of an epidemic, by fitting data from case studies on
a small number of hospitals in the region where the disease is en-
demic. The sensitivity of this model is defined by the reproductive
number (Ro ) and the effect of MERS specific parameters on it are
validated by epidemiologists on the population of Saudi Arabia
[26]. We can relate the population numbers s(t), i(t) and r (t) by the
following differential equations. Solving for i(t), given the initial
population numbers, gives us the estimate of number of infected
patients, which we refer to as SIR[t] in the following sections.

∂s

∂t
= −bs(t)i(t) (1)

∂i

∂t
= bs(t)i(t) − ki(t) (2)

∂r

∂t
= ki(t) (3)

where b = rate of transmission, k = rate of recovery

4.4 Granger Causal Testing
Given two time-series X and Y , the Granger causality test checks
whether the X is more effective in predicting Y than using just Y
and if this holds then the test concludes X “Granger-causes” Y [15].
However, if both X and Y are driven by a common third process with
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Figure 2: Granger causal link between two time series

different lags, one might still fail to reject the alternative hypothesis
of Granger causality that X “does not Granger-cause” Y. Hence, in
our modeling, we explore the possibility of causal links ignoring
confounding variables due to the domain knowledge that there are
no such confounding variable noted by the WHO. We note that if
such an unobserved confounding variable exists, it is not considered
in our Granger causality test.

In order to ensure that the news variables chosen are indeed
related to the disease outbreak and not spurious correlations, we
ran the Granger Causal test [15] between all of the news indicator
variables (x) and the disease outbreak (y) as seen in Figures 2. We
chose linear equations as our choice of modeling the prediction
between x and y as it retains the benefits of interpretability in
their coefficients. If,m,p,q denote the time lags of y,x in the auto-
regressive equation at time t , then we can write:

yt = a0 + a1yt−1 + ... + amyt−m + bpxt−p + ... + bqxt−q + errort

Specifically, x is known to Granger-cause y, if there exists at least
one non-zero coefficient of x which then leads to a significant
improvement in prediction error over the case when we just use
lagged values of y. We perform parametric F-tests on the non-zero
coefficients of lagged variables and chose only the significant vari-
ables (p-values ≤ 0.05) to reject the null hypothesis that “the news
indicator variable (x ) does not Granger-cause the disease outbreak
(y)”. The chosen Granger Causal news variables are denoted by
the vector News[t] for a given time t , in the next sections. Note
that since true causality is hard to establish through observational
studies, our goal here is to only find news variables which depict
“predictive causality” and better predict future time series of the
disease outbreak.

4.5 News Influenced SIR Modeling
Incorporating the news signals which are Granger Causal of the
disease outbreak infections, into the epidemiological SIR model is
the main methodological contribution of the paper. One option is
to make changes to the equilibrium of the SIR model by altering
the nodes in the graphical model and estimating the corresponding
changes based on compartments induced by the news variables.
This however does not scale to every disease specific model. Re-
configuring the disease model directly requires a lot of domain
knowledge of both the disease and the related news variable, and
remains out of scope of our paper.

Instead, we perceive the SIR model as yet another time series
variable in a multivariate linear regression. This makes it possible

to model other diseases easily in a similar manner without having
to worry about the complex differential equations that govern the
epidemiological transmission model of each disease. Now that we
have the relevant news conflict variables chosen by the Granger
Causal Test News[t] and the MERS SIR model’s value SIR[t], we
train a multivariate auto-regressive model with Lasso penalty [2]
using glmnet [11] from lagged values of the ground truth It−δ
and the regression variables as follows, where A,B,C are weight
matrices, maximum lag δ , and for any matrix x, let xt−δ = x[t − δ :
t − 1].

I [t] = A.It−δ + B.Newst−δ +C .SIRt−δ (4)

min
A,B,C

∥I [t] −A.It−δ − B.Newst−δ −C .SIRt−δ ∥22 (5)

subject to∥(A,B,C)∥1 ≤ r , for a Lasso penalty r . (6)

The non-zero news coefficients that remain in the Lasso equation
best explain the difference between SIR and ground truth in the
News influenced disease model (Figure 5). The Lasso regularization
embodies a variable selection procedure that ensures that only the
most important variables are selected for prediction. We also reduce
collinear variables in order to ensure that the Lasso regularizer does
not pick variables which depict the same underlying event. This can
be seen as a pre-processing step of removing a potential confounder
variable as we cannot remove it once the regressionmodel is trained.
We use Variance Inflation Scores to prune out collinear variables [3].
This ensures that only those variables which cannot be estimated
using the remaining news variables are used in the prediction task.

5 EVALUATION
In this section, we explain the datasets used and the implementation
details in the news influenced disease models.

5.1 Dataset
In this section, we describe the disease outbreak ground truth source
and the news event databases used to extract conflict related signals
in the region.

5.1.1 WHO-UN Dataset. The WHO-UN website [20] presents a
collection of articles, which are updated every 8 to 15 days. Articles
on each disease include statistics such as the number of cases or
deaths and the date of the detected disease. The total size of this
data spans 400 events for 192 countries from 2013 to 2018. There are
242 articles mentioning MERS, with breakdown of aggregate cases
for each of the 12 Middle eastern regions + South Korea (traced
back to a traveler from the Middle East). This data serves as our
ground truth set.

5.1.2 GDELT Dataset. GDELT 1.0 Global Knowledge Graph [17]
monitors the world’s news from every country in over 100 lan-
guages with more than 1.5 billion events per year from April 2013
to Jan 2018, updated daily. These events are categorized based on
killings or other crises such as natural disasters. It also provides
a daily human count for each of these event types from sources
like AFP, BBC monitoring, AP, WP, NYT and aggregator tools like
Google News. We particularly focus on killed, wounded, sickened
and affected events reported in each of the 12 regions as shown in
Figure 3.
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Figure 3: Killed and Sickened count in GDELT

Figure 4: Number of new cases and deaths by MERS as re-
ported by UN-WHO (> 70% in Saudi Arabia)

5.1.3 Uppsala Conflict Data Program. The Uppsala Conflict dataset
[13, 22] provides deaths from organized violence keyed by a conflict
ID and country, where each conflict has at least 25 related deaths
in a year. The data set is presented as a time series with an yearly
number of deaths per conflict. We focused on 8 of the 12 MERS
regions which had a conflict (includes Saudi Arabia).

5.2 Data Preprocessing
We retrieved all the disease outbreak news articles from the UN
website. These were later filtered to contain only the headline,
timestamp, new cases and deaths using rule based string matching
as can be seen in Figure 4. We extracted time series for each of the
48 normalized news indicator variables to range in [−1, 1] for all
(country, event-type) tuples from GDELT and 8 conflict variables
per country from Uppsala. Time series chunking is also done to
ensure that all the time series used for a specific time window is
stationary. We take differences between consecutive values until
stationarity is achieved. If we do not observe stationarity after
differencing twice, we drop that time series from consideration as
it no longer holds any interpretable meaning.

5.3 Model Parameters
The values of the SIR model’s parameters as noted in Eqns [1-3] are
predetermined. Specifically, the transmission rate b = 1.4248 and
recovery rate k = 0.1484, used are based on the epidemiology study
for MERS done in [4], as opposed to making theoretical estimations.
The maximum time lag used for Granger Causal link estimation
δ = 6weeks. The samemaximum time lagwas also used for the final
news influenced multivariate auto-regressive model. This value was

Figure 5: Difference between SIR and ground truth for an
outbreak time window.

chosen based on the minimum size of the time chunk obtained in
the data for 20 weeks.

5.4 Implementation
An overview of our implementation of building a news influenced
disease model is given in Algorithm 1.

Algorithm 1: News Influenced Disease Modeling
1 Extract the ground truth timeseries for number of cases from

the WHO-UN articles
2 Fit the epidemiological SIR model using pre-defined MERS

specific parameters
3 Filter relevant conflict signals from GDELT and Uppsala by

running Granger Causality tests
4 Train a multivariate auto-regressive model with SIR estimate

and relevant conflict signals

6 RESULTS
In this section, we will discuss the performance of the News Influ-
enced disease model against several baselines. We pick 10 short
outbreaks from 2013-2018, each spanning 21 weeks with the peak of
the outbreak in the middle of the time series. The disease numbers
reported are new cases and new deaths reported per week due of
the disease. We fit the SIR model for each of these 10 outbreaks as
per the variables mentioned above. We then normalize both the
ground truth values and the SIR modeled values such that mini-
mum and maximum values in the time series are scaled between
0 and 1 as seen in Figure 5. The final error calculated is the sum
of the point-wise (one point per week) squared errors between the
modeled and the ground truth. We report the average 10-fold cross
validation error across multiple outbreaks.

6.1 Choice of News Source
In building a news based disease model, the source of the signals
incorporated can have a significant impact on the trustability and
accuracy of a model. Choosing between news sources can also
influence the implementation requirements if this model were to
be scaled. We tried various sources for the Newst−δ variable in
Equation 4: 1) Conflict signals from GDELT 2) Conflict signals from
Uppsala 3) Both GDELT and Uppsala 4) Only GDELT signals (no
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SIR, Uppsala). As mentioned in Table 1, SIR model with GDELT
signals performs the best, reducing the error from the baseline SIR
model of 8.99 to 2.68, an improvement by a factor of 3.36. The results
presented in Table 1 are average errors from 10-fold cross validation
of the episodes identified from time chunking. The low standard
deviation of the errors shows that there is not a huge variation
based on which chunks of outbreak episodes were used for training,
indicating consistency and internal validity of the news influenced
disease model.

Uppsala conflict signals were not useful for predicting the dis-
ease outbreak time series. We attribute this to the hand curated
condensed extremely sparse (yearly) representation in the Uppsala
event database. GDELT on the other hand is a daily aggregated
database which captures the signals as represented in the news.
This shows that GDELT has a better trade-off between aggrega-
tion coarseness and the time duration taken to put out verified
conflict statistics. Another surprising result was that, using factors
from GDELT alone in the multivariate auto-regressive prediction,
produces a much lower error than the SIR model. This clearly indi-
cates that local environmental and social factors are as important if
not more important than the propagation properties of the disease
within hospitals.

Model Residual sum of squares error Std deviation

SIR 8.99 0.65
SIR+GDELT 2.68 0.42
SIR+Uppsala 35.30 4.34
SIR+GDELT+Uppsala 2.81 0.43
GDELT 5.08 1.29

Table 1: Performance of News Influenced SIR Model

In Table 2, we see that , the news influenced SIR model performs
well across outbreak episodes. The results presented are for those
cross-validation rounds when the said episode was used for testing.
The low variation is indicative that we can use the approach in
predicting future outbreaks and consistently explain the factors
that were highlighted in the model.

Outbreak Episode RMSE

March–June 2014 2.06
July–December 2014 0.40
January–April 2015 1.29
May–June 2015 2.38
June–July 2015 6.06
July–Sep 2015 1.92
April 2016 – August 2017 1.63

Table 2: Performance of News Influenced SIR Model across
Episodes

6.2 Explainability of News Signals
Claiming lower prediction errors for the disease transmission pat-
terns is not useful unless the model can be explained in terms of
the multiple conflict signals in our model. Since, the time series
used for analyzing each episode are normalized, we can directly
compare the values of the coefficients. We chose the coefficients

with the maximum absolute value over the many cross validation
runs. This is highly correlated to the sensitivity index (SIRo ) usually
computed for disease outbreak models. The sign of the coefficients
also indicate how conflict might indirectly influence the transmis-
sion patterns of the disease outbreak as can be seen in Table 3.
In addition to the raw value of the coefficient, it is also useful to
determine what is the expected time lag between a news signal
appearing in the news and the expected influence on the number
of infected people. This number (in weeks) when combined with
the coefficient value, provides the estimate of when and how much
of an impact a signal in the news will have on the disease outbreak.

To illustrate this explainability, we choose to analyse the model
predicting the outbreak from March-June 2014. Table 3 shows that
although the time-lagged ground truth (actual counts from WHO)
and SIR model remain the most important variables, conflict signals
like kills in Kuwait and Lebanon (neighboring regions to Saudi
Arabia) have a negative impact on the transmission of the disease,
whereas increase in wounded and sick people in Egypt and affected
people in Jordan indicate the increase in disease transmission of
MERS. While events related to people being killed in conflicts could
be traced to severe restriction of migration, while events related to
being affected or wounded could seen as early indicators of people
migrating due to the upcoming severe conflicts. While we note that
there might be some feedback built into our model based on sick
events retrospectively used, this requires further explorations.

Feature Coefficient Best time lag (weeks)

Lagged_Truth 0.17 1
SIR 0.23 3
kill_Kuwait -0.17 5
kill_Lebanon -0.15 5
wound_Egypt 0.12 5
affect_Jordan 0.10 1
sick_Egypt 0.03 1

Table 3: Important factors of theNews Influenced SIRmodel

6.3 Implications
The above results which showmore than 3x reduction in root means
squared error is significant also because of the evidence it provides
confirming the hypothesis articulated by WHO that conflict causes
severe distress and exacerbates the spread of diseases. All the coef-
ficients reported above are statistically significant (p-values < 0.05).
Additionally, the time lags corresponding to each of the variables
in multivariate regression provides us actionable information to
facilitate timely interventions for disease containment. For example,
when people in Jordan were affected by conflict in March–June
2014, it led to an increase in MERS infected cases due to migra-
tion 1 week after the said conflict as illustrated in Table 3. Similar
insights can be extracted for other outbreak episodes too. As per
the current WHO fact sheet about MERS [20], there is no vaccine
available for MERS, but appropriate hygiene needs to be practiced
by people handling dromedary camels and the consumption of raw
animal products should be minimized during the outbreak. Such
advice is particularly useful for people affected in the region as
symptoms of MERS appear later in the infection stage and is not
easily distinguishable by health care workers. This early warning
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Figure 6: Sensitivity analysis based on number killed in con-
flicts in Kuwait indicates a uniform value shift in number
of infected cases in March-June 2014.

indicator is also beneficial for health care workers to prepare and
use appropriate eye protection and other containment strategies
including proactive blood tests.

6.4 News Sensitivity
Along with the timeliness of the news based disease model, we can
also measure the sensitivity of the model for changes in the future
related to conflict. This provides a way to distinguish the variations
in the disease propagation pattern with any future significant esca-
lation in conflict. We illustrate this sensitive analysis on the MERS
outbreak from March–June 2014. Similar analyses can be done on
other outbreak episodes too. We observe that even though some
coefficients of news based variables are closer in value (kill_Kuwait
and kill_Lebanon), the patterns they depict with respect to sen-
sitivity significantly vary due to the underlying time series. For
example, in Figure 6, we mostly see an increase in the number of
MERS infected cases throughout the time series uniformly with
increase in the number of people killed due to conflict in Kuwait.
Whereas,in Figure 7 for Lebanon, we see both a phase shift and
change in number of MERS infected cases with increase in number
of people killed in conflict. We correspondingly see specific time
periods where the impact is the highest from the conflict (week
9) as can be seen in Egypt for number of people wounded in con-
flict in Figure 8. Such variations in expected number of infected
cases was not previously known or understood through time-based
sensitivity analysis. This not only allows decision makers to cate-
gorize different types of conflicts, but also increases the awareness
of the complexity and tight linkage between conflict and disease
outbreaks.

7 DISCUSSION
Is news a good modeling choice?: There is usually a disconnect
between the disease modeling and the health care policy communi-
ties. While, the former relies on mathematical modeling to extract
the most accurate parameters of the model, the latter cares more
about adapting to on-the-ground realities and incorporating in-
formation on-the-fly into decision making. Mathematical models
which are rigid and harder to interpret is usually not implemented
by policy decision makers. This has led to customized web-tools
built for practitioners to interface their knowledge with the underly-
ing model [7]. We are inspired by such approaches and extend it to
directly incorporate local information from the news. While news

Figure 7: Sensitivity analysis based on number killed in con-
flicts in Lebanon indicates a disparate phase and value shift
in number of infected cases in March-June 2014.

Figure 8: Sensitivity analysis based on number wounded in
conflicts in Egypt shows varied shifts in number of infected
cases at specific time intervals in March-June 2014.

based modeling has the potential pitfall of relying on sentiments
more than facts, we incorporate verified statistics about conflicts
which get reported instead of the story around the event, which
can be interpreted subjectively. This makes news based modeling
a worthwhile choice for disease outbreaks which communicable
through social contact.

Is MERS different than other diseases?: As MERS is heavily
localized to countries in the Arabian Peninsula, it makes local news
based modeling easier and drastically reduces the scope of news
articles to be studied. MERS also has the clear distinction of a
disease which spreads due to human and animal transportation
in this region. This movement of people, animals and products is
known to be a social indicator of the underlying political, economic
and humanitarian conditions in the region. Thus, modeling MERS
through news based modeling in the middle east makes more sense
than other vector borne diseases or in any other region, outside the
area of impact of the above macro-level events like conflict.

How can this be used at scale?: Having been able to recon-
struct the time series of previous episodes of MERS with low av-
erage prediction error and low deviation in errors across all cross-
validation of episodes, it provides us confidence to incorporate this
model to predict future outbreaks. The model however might have
to be tweaked to account for the efficient implementation of health
care advisories issued by the WHO, which has significantly reduced
the risk of MERS since it first occurred in 2012. This would impact
the SIR component of the news influencedmodel, but not the factors
learnt from the news, which are updated by design. Such a model,
if adopted by the WHO or other health agency can significantly
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improve prediction of disease outbreaks based on historical pat-
terns in the news, and lead to better intervention and information
dissemination strategies.

When would this model not work?: Further analysis how-
ever is required to breakdown the different types of conflict and
the corresponding regions they impact. This can be done through
spatial and text based categorization of the news articles which
mention conflict. Such a model would however significantly suffer
from the sparsity in the data post the categorization of conflict, sim-
ilar to how news signals from the Uppsala Conflict Data program
proved to be less effective due to the sparsity of data. This challenge
needs further model improvements and cannot be addressed by the
current news based model. One option we are actively pursuing is
the tree-based factorization of the news signals which combines the
best of both sub-categorization and larger datasets in a hierarchical
approach.

8 CONCLUSION
Susceptibility, infection and recovery is modeled in disease trans-
mission models using intrinsic properties of the disease. However,
extrinsic factors also influence disease transmission and have been
previously unexplored. We study the effect of regional conflict on
the mobility patterns of people and animals for the transmission of
MERS-CoV and show that by augmenting conflict based signals in
real time news streams with a standard MERS SIR model, we signifi-
cantly lower the infected population prediction error. Inspection of
our news influenced disease model provides a human interpretable
understanding even with very sparse signals.
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