
 

 

 
ABSTRACT 
Facial expressions transmit a variety of social, 
grammatical, and affective signals. For technology to 
leverage this rich source of communication, tools that 
better model the breadth of information they convey are 
required. MiFace is a novel framework for creating 
expression lexicons that map signal values to parameterized 
facial muscle movements inferred by trained experts. The 
set of generally accepted expressions established in this 

way is limited to six basic displays of affect. In contrast, 
our approach generatively simulates muscle movements on 
a 3D avatar. By applying natural language processing 
techniques to crowdsourced free-response labels for the 
resulting images, we efficiently converge on an 
expression’s value across signal categories. Two studies 
returned 218 discriminable facial expressions with 51 
unique labels. The six basic emotions are included, but we 
additionally define such nuanced expressions as 
embarrassed, curious, and hopeful.  

Author Key Words 
Facial expression recognition; virtual humans; 3D 
modeling; avatars; affective computing; natural language 
processing; social signal processing. 

ACM Classification Keywords 
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HCI   • Applied computing ~ Psychology 

INTRODUCTION 
When people interact, up to 65% of the communication that 
occurs is non-verbal [21]. While non-verbal signals may be 
transmitted via gestures, posture, gaze, or paralinguistics 

 
Figure 1. The six basic emotions from the Cohn-Kanade database [38], matched to our avatar, from top left: 

disgust, sadness, happiness, fear, surprise, and anger. 
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[32], the face is singularly expressive. Facial expressions 
(FEs) can convey felt or emblematic emotion [17], intent 
[22], cultural norms [53], cognitive states [51], or social 
signals [27]. Attempts have been made to create word 
relations to facial movements around emotion or hedonics 
[61], however, to date no compendium of labeled, 
quantified FEs that captures the full breadth of human 
facial behavior has been produced. The most accepted set 
of FEs is instead limited to six expressions of emotion 
(Figure 1).  

Ideally, well-designed FE lexicons will accurately map 
facial muscle movements to fine-grained labels, identifying 
signal values for each movement configuration. MiFace is a 
process for building such lexicons, with a novel approach 
that we hope will facilitate rapid progress in FE modeling 
and recognition. Lexicons built using MiFace could be used 
to enrich research, mental healthcare, entertainment, 
security, and commerce. Areas of application include 
psychological testing and treatment, the design of 
intelligent affective agents, procedural character animation 
for games, and automated facial expression recognition 
(FER).  

The research methods documented in this paper grew out of 
an awareness that a shared, quantifiable understanding of 
nonverbal communication can serve as the foundation for 
broad growth in computer-based modeling and recognition 
of human behavior. While there are many communication 
modalities that require study and integration to paint a 
complete picture, fine-grained understanding may be best 
obtained by examining the parts individually. Our focus is 
on the face, which is capable of conveying particularly 
nuanced signals.  

CONTRIBUTION: A NEW WAY OF MAPPING FEs 
Darwin’s The Expression of the Emotions in Man and 
Animals, which provides detailed descriptions of facial 
behaviors and posits their evolutionary origin, was first 
published 145 years ago [13]. Why, then, is the generally 
accepted set of facial expressions still limited to six basic 
emotions? Humans are capable of generating and 
interpreting a much larger set of FEs. We argue that the 
labor, expertise and expense required by the traditional 
approach to studying FEs has hindered the development of 
broader lexicons.  

Facial expression mapping is a challenging problem, 
difficult to address using existing computational and 
psychological research techniques. Debates over the 
universality of FEs and their relation to emotion have 
dominated the literature in psychology [16, 25, 52, 51], 
with little attention given to expanding the accepted 
lexicon. The gold standard for mapping muscle activations 
to FEs is the Facial Action Coding System (FACS) [17]. 
Using FACS, human experts annotate discrete craniofacial 
muscle movements called Action Units (AUs).  

Automated recognition systems have been limited in the 
number of FEs they identify because they are informed by 

psychology research, and require large sets of images 
annotated by FACS-certified coders [4, 10, 38] as input to a 
machine learning phase in which features for each FE are 
extracted. Creating an image set from scratch requires 
expert FACs coders to either pose each expression, coach 
volunteers, or manually annotate images captured in the 
wild. The minimal FACs competency needed to code each 
expression with the correct AUs and intensities, and 
achieve satisfactory inter-rater reliability, requires at least 
100 hours of dedicated training [4, 10, 24, 38]. Typically, 
images depict a narrow range of subjects, resulting in sets 
that lack the diversity in AU intensity, race, age, and 
gender needed to obtain accuracy in real-world situations. 

In contrast, the MiFace framework uses a 3D digital model 
(avatar) with known muscle activation parameters as the 
basis for generating FE images. Our avatar employs FACS-
based deformations of 24 key AUs on a 0-1 scale, each of 
which can be manipulated independently. Any weighted 
combination of AUs can thus be generated 
programmatically. Crowdsourced naïve judges determine 
which combinations of AUs are considered recognizable 
expressions, and provide sets of single-word labels 
describing their perceptions of what an expression 
communicates. When set coherence is strong (as described 
in the Hierarchical Agglomerative Clustering sub-
subsection of Design and Methods), a single, representative 
label is determined using natural language processing 
(NLP). While our initial tests were run using one avatar, an 
infinite number of appearances based on age, race, gender, 
and ethnicity morphs (alterations in the morphology of a 
digital model) is possible. 

Traditional methods of building a FE database are detailed 
further in [38], which describes the creation of the 
Extended Cohn-Kanade Dataset. In our two proof-of-
concept studies, detailed in the Labeling and Semantic 
Similarity Results section, we identified 218 reliably 
recognizable facial expressions mapped to known AU 
activation parameters and crowdsourced labels. These 
results indicate that our method can be used to expand the 
known FE space substantially with much lower overhead 
than traditional methods require. 

APPLICATIONS: FE LEXICONS FOR SMART 
INTERACTIVE SYSTEMS 
FER variability has been found to correlate with psychiatric 
disorders such as PTSD, schizophrenia, and depression [23, 
41, 44, 47, 68], as well as syndromes of atypical 
development including Autism Spectrum Disorder and 
Attention-Deficit Hyperactivity Disorder [57]. An 
extensive FE lexicon could act as the foundation for more 
comprehensive computer-based diagnostics and social 
skills training [58] by modeling expressions on virtual 
humans. Reproducing FEs in this way would allow for the 
creation of test sets in which the model can vary by race, 
age, and gender, but remain consistent in the expressions 
displayed. Avatars for training could also be tailored to the 
user for an improved sense of affiliation. 
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Virtual humans can also augment service sectors, acting as 
digital assistants [18], teaching coaches [6], or nurses’ aides 
[71]. They may relieve the burden of “emotional labor” 
induced by performing client-facing work that requires 
maintaining a consistent attitudinal façade [28, 30]. By 
dependably providing an empathic response [37, 65, 30], 
they can increase satisfaction levels of their human clients.  

Having a known lexicon of facial behaviors to draw from 
could significantly improve the quality of procedurally 
generated FEs displayed by ancillary non-player characters 
(NPCs) in video games. While primary characters are 
commonly animated using motion capture data generated 
by tracking professional actors [66], more cost–and time–
efficient methods are required for the development of NPCs 
[55]. With a MiFace lexicon, context-based FEs could be 
generated for subtler NPC interactions using simple natural 
language triggers. 

In addition to acting as a foundation for expressive digital 
agents, this lexicon could expand the range of FEs that can 
be identified by automated recognition. Automated FER 
has received a great deal of attention the past 15 years [40, 
54, 70]. Systems that perform robust automatic FER can 
support a broad range of human activity, including: 
recognizing pain or confusion in a healthcare setting [30, 
48]; providing tools to assess mental wellness [23, 44]; 
measuring the attention level of students or an audience 
[65, 67]; gauging a client’s state of mind during a customer 
care session [60]; and enhancing security [34].  

While as yet untested, recent improvements in motion 
capture retargeting—using the movements of a human 
actor to drive an animated character—may allow for 
automated FER based on movements calculated from the 
deformations of a digital target rather than machine 
learning over large image datasets. Because we use a digital 
model to emulate muscle movements, doing automated 
FER with MiFace should be possible by retargeting 
movements then matching the resulting model 
deformations to known expression mappings. 

RELATED WORK 
Facial Expressions as Signals 
Social scientists have put forward a wide range of theories 
of emotion, arguing that they arise as part of the 
evolutionary process and are universal to all humans [16, 
47], or are largely learned constructs that are culturally 
dependent [25, 39]. Some have avoided the issue of 
causality, preferring to focus on classification [42]. Of 
particular relevance to our method of processing label sets 
is the prototype approach to emotion, which views 
emotions as members of fuzzy sets grouped in a tree-like 
structure [19, 20, 56]. This perspective provides a much 
broader basis for the mapping of emotion to language than 
conceiving of emotion as discrete or basic entities. In fact, 
[56] identified 135 hierarchically clustered emotion names. 

Some researchers have articulated an expanded expression 
space, notably [15] at Ohio State University, where a recent 

study found that observers could categorize compound 
expressions, e.g., fearfully surprised. Including the six basic 
emotions, their results define 21 discrete FEs. This 
experiment adds strength to our argument that many 
discriminable expressions remain to be identified, but their 
method required the use of human participants to model the 
expressions, and FACS coders to identify the component 
movements. This technique does not scale for the 
production and testing of large image sets that represent the 
full diversity of human expression. 

While such results support our assertion that an extensive 
set of FEs is definable, not all emotion words have 
corresponding facial signals, and not all expressions denote 
emotion. Physical or cognitive states such as pain, 
sleepiness, or confusion can be reflected in the face. 
Expressions can act as conversational “punctuation” [17]. 
As exemplified by the “not face,” which is a facial 
representation of negation, they can also perform as non-
verbal substitutes for linguistic communication [5]. Many 
spontaneously produced FEs naturally convey emotion. 
However, a more inclusive exploration of facial behavior 
can be found in the domain of social signal processing [64], 
which encompasses multiple modalities and characteristics 
of social information exchange. 

Avatars for FE Research 
Faceshift, the software used as the basis for creating our 
avatar, was developed for markerless facial motion capture 
and retargeting [66]. Retargeting is the process of 
transferring a human actor’s movements to a digital 
character. In facial retargeting, surface deformations are 
captured by tracking markers on the actor’s face or, as with 
faceshift, acquiring depth and texture information from a 
sensor. Retargeting is frequently used in modeling for 
animation and research [35]. 

In a sophisticated hybrid approach to using digital avatars 
for FE modeling and testing, [69] developed a highly 
realistic, FACS-based 3D morphable model capable of 
synthesizing arbitrary combinations and weightings of 
AUs, as does MiFace. Untrained observers reliably 
identified the six basic emotions in a forced-choice study. 
However, no research expanding the repertoire of 
recognizable facial behaviors was reported. FACSGen, a 
high-quality FACS-based modeling tool [50], does not rely 
on capturing human performance or geometry, and is 
natively digital. The D3DFACS Database comprises a set 
of 519 AU sequences, captured by scanning human actors 
with a configuration requiring six cameras [12, 11].  

Ochs, Pelachaud, and McKeown tested polite, amused, and 
embarrassed smile variants using an embodied 
conversational agent (ECA) named Greta, a medium-
fidelity digital human [43]. Greta’s smiling behavior was 
designed and validated by crowdsourced study participants. 
An initial set of participants selected from a range of preset 
movement parameters to generate short animations of Greta 
performing smile variants. A validation study using a 
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separate group of participants demonstrated that viewer 
perceptions of Greta’s smiling behavior matched the intents 
of the smile designers, and that her synthesized movements 
conformed to those expected based on existing FE 
mappings. The Greta studies show that a virtual human can 
elicit an appropriate affective response, and need not 
appear hyper-realistic to do so. 

Avatars have also been used to measure other kinds of 
social and emotional inferences made by observers. Morphs 
of an average male 3D face model were constructed and 
used as targets for study participants to judge attributes 
such as attractiveness, competency, dominance, 
extroversion, and trustworthiness based on facial 
appearance by [62]. Jack and colleagues produced a 
morphable, expressive avatar that incorporated temporal 
dynamics by using animated expressions. They tested for 
cultural universality of the six basic emotions [29]. 
Conversely, AniAvatar was used to evaluate the 
performance of an animated avatar for self-evaluation of 
affective state [59].  

DESIGN AND METHODS 
Creating the MiFace framework for defining facial 
communication mappings involved two proof-of-concept 
studies and the development of two critical components: a 
3D model that is lifelike enough to accurately mimic 
human facial movements and a means for extracting a 
single word label from a set of responses that encapsulates 
the set semantics. To validate our results, we performed a 
human semantic similarity test. As outlined below, this 
section provides a detailed description of our model and 
experimental designs, with implementation details. 
Subsections are ordered stepwise as performed. Results 
follow in a separate section. 

1. Avatar Design: Generating believable faces on a 
3D model 

2. Gathering Label Sets: Crowdsourced studies on 
Amazon’s Mechanical Turk  
I. Phase One: Discerning expressions with 

communicative value 
II. Phase Two: Gathering label sets for each 

expression 
3. Data Analysis: Similarity-moderated majority vote 

for best label 
I. Natural language processing to calculate a 

semantic centroid 
II. Hierarchical agglomerative clustering 

4. Semantic Similarity Validation 
 
Avatar Design: Generating Believable Faces on a 3D 
Model 
Faceshift was chosen as the starting point for building our 
model based on the quality of its provided “average” head 
mesh (the model’s polygonal surface geometry), capacity 
for creating and exporting custom facial movements, and 
ability to capture an actor’s movement using a depth 
sensing camera without motion capture markers. More 
detail on faceshift can be found in the Related Work: 
Avatars for FE Research subsection, or in [66]. Initial 
production of the head mesh and facial actions for our trial 
avatar were created using the pipeline in Figure 2. An 
expert in FACS posed individual AUs at maximum 
activation for scanning to target motions defined in 
faceshift, some of which were provided with the software 
and some custom built. The resulting mesh and facial 
morph targets were edited in Maya, Autodesk’s computer 
animation and modeling software. 

Faceshift provides a fairly comprehensive set of morph 
targets, based loosely on FACS. Morphs are deformations 
of the model’s base geometry, used to create smooth state 
transitions for animation. The model was skinned and a UV 
texture map—a two-dimensional image applied to the 

Figure 2. The avatar creation pipeline uses a depth sensor for head geometry capture, faceshift software trained 
with custom expressions, and Maya for final texturing and editing of facial movement morphs. 
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geometry’s surface—was acquired using a commodity 
webcam to photograph the FACS actor. Some 
modifications to the morph set were required to better 
approximate the surface changes described in FACS. These 
adjustments and the addition of missing FACS morph 
targets were manually modeled in Maya.  

After final modeling, the avatar could perform 28 FACS 
movements, both unilaterally and bilaterally where 
applicable. Mouth, jaw, eye, and head movements were 
also integrated, but in order to focus on the movements 
typically studied in core FE research only mouth and jaw 
kinematics were used in the initial studies. Morph 
transforms were applied linearly to the base head mesh on a 
scale from 0-1, with 0 indicating no modification and 1 
representing the maximum change from baseline. Sets of 
still images depicting AU combinations were generated 
programmatically in Maya using scripts written in the 
Maya Embedded Language.  

To make our study manageable, we constrained the number 
of AUs per generated FE and displayed them at constant 
weights (Table 1). Using the FACS Investigator’s Guide 
and the FACS certification test, we identified 22 key 
movements [17].  Based on expert knowledge, weights 
were fixed at levels that rendered the AUs plausible and 
clearly visible. 

For Study One, three AUs were combined per FE, which is 
the most frequently occurring count found for FEs in the 
FACS Guide and test (excluding head and eye movements). 
Study Two used the same weightings applied to two AUs 
per FE. Because our proof-of-concept avatar is a relatively 
simple prototype, additional limitations were placed on 
using images in which highly additive or easily confused 
AUs would have been combined, i.e., AUs 6+7, 9+10, and 
23+24. For all combinations of 22 choose 3 in Study One, 
that narrowed our list of candidates to 1380 movement 
combinations. Study Two began with 229 candidates.  

Gathering Label Sets: Crowdsourced Studies on 
Amazon’s Mechanical Turk 

To determine which images were considered recognizable, 
realistic human FEs, and gather sets of candidate single 
word labels denoting the communicative content of a FE, 
we designed a two-phase process implemented on 
Amazon’s Mechanical Turk (AMT), a site for 
crowdsourcing remote workers. Amazon defines a Human 
Intelligence Task (HIT) as a single assignment completed 
by an individual. For both phases, workers with acceptance 
rates of 95% or greater could participate. We did not collect 
demographic data about any of the participants. 

Phase One: Discerning Expressions with Communicative 
Value  
Workers on AMT were presented with 39 3x2 image grids, 
along with a neutral face (no AUs activated) for reference, 
with three workers assigned per grid. They were instructed 
to select the radio button next to any image that they 
believed represented a naturalistic human FE and paid $.10 
per grid. A FE was classed as recognizable when two or 
more out of the three workers agreed it had communicative 
value. Of the 1380 candidate combinations from Study 
One, 341 were passed to phase two for labeling. Of the 229 
images from Study Two, 114 went on to phase two. 

Phase Two: Gathering Label Sets for Each Expression 
Images rated as expressive from phase one of Studies One 
and Two were assigned to phase two for labeling on AMT. 
In phase two, 40 individual workers were assigned to each 
image, and tasked with freely choosing a single word label 
that best described the facial expression shown. Workers 
were payed at a rate of $.10 per response. Some images 
completed with as few as 37 responses, but most received a 
full set of 40 labels. Workers on AMT generally make the 
best income when they can do large numbers of familiar 
tasks. Because phase two of our studies required 40 unique 
workers per image, batches of HITS could become 
fragmented and unappealing as they drew close to 
finishing, leaving some HITS undone. In addition, a few 
workers who did a small number of HITS had their work 
thrown out entirely because they demonstrated a pattern of 
responses that did not follow our guidelines. 

The AMT interface presented a single image per HIT, 
along with the same neutral face shown in phase one and 
instructions for evaluating the facial expression. 
Suggestions for producing a thoughtful evaluation include 
visualizing the expression dynamically, as it would be 
displayed in the course of conversation, and actively 
mimicking the movements modeled to produce a resonant 
internal response.  

Participants were also given guidelines for word selection, 
including instructions to use a thesaurus. We provided a 
link to an online thesaurus (Figure 3). They were instructed 
to enter the single-word label that best described the 
emotion, mindset, or internal state being signaled by the 
avatar’s FE. Label sets were cleaned prior to the analysis 
phase. Cleaning included spelling correction if the choice 
of word was clear; in ambiguous cases the response was 

AU Weight AU Weight AU Weight 

1 0.7 9 0.8 18 0.8 
L2 0.6 10 1.0 20 0.7 
2 0.6 12 1.0 23 1.0 
4 1.5 L14 0.7 24 1.0 
5 0.7 14 1.0 25/26 0.6 

6 0.7 15 0.7 28 0.7 
7 1.0 17 0.8 43 0.3 

 
Table 1. Action Units used in the study, with levels 
of activation from 0-1. AU4 was over weighted to 

make it more distinct. AUs 25 and 26 are combined 
to portray an open mouth. An “L” indicates 

unilateral activation on the left side of the face. 
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removed. We also removed a small number of nonsense 
terms and multi-word phrases.  

Data Analysis: Similarity-Moderated Majority Vote for 
Best Label 
While using microtask platforms to quickly recruit a large, 
diverse participant pool is by now a well-established 
research practice [1, 8, 9, 31, 33], free-response labeling 
designs have been the exception in FE research. Lack of a 
rigorously defined, quantitative method for determining 
term relatedness within a set may be a limiting factor for 
prior free-response studies [26]. We address this deficit by 
applying a novel two-step process. First, the constituent 
responses of a label set are analyzed using a NLP algorithm 
to find the top-ranked, representative label for each set. 
Step two applies hierarchical agglomerative clustering to 
check whether most of the elements of a label set share 
meanings similar to the representative for that set. 

Given a label set corresponding to a single FE image, we 
first performed simple data cleaning operations to correct 
for spelling errors and remove non-words. Then, we 
computed similarity scores for all word pairs using a 
modified version of the GloVe cosine distance program run 
with the 300-dimensional Wikipedia 2014 + Gigaword 5 
pre-trained word vector set [45]. Although this corpus 
includes a vocabulary of 400,000 unique words, some of 
the labels supplied by our study participants are not 
referenced. Word pairs in which either or both labels were 
missing from the vocabulary were discarded. When 
multiple respondents provided the same label, it was 
allowed to repeat in the set as many times as given. Same 

word pairs were assigned a similarity score of one, which is 
the maximum on a scale that ranges from -1 (complete 
opposites) to 1. As derived from the weighted sum function 
of [14], we compute the overall weight ܵ (݅ ) of a label: 

ܵ(݅) =  ෍ ,൫݈௜݉݅ݏ) ௝݈൯)௡
௜ୀଵ௝ୀ௜ାଵ  

where (݉݅ݏ൫݈௜, ௝݈൯)  is the word vector cosine similarity 
between two labels and n is the total number of labels per 
expression. Instances in which a label is repeated are 
collapsed, and the algorithm outputs a list of unique labels 
with their sums within each set. If tests for set coherence 
are positive, the label with the maximum summed weight is 
considered the best label and assigned as the signal value of 
the associated FE. Example output of the weight summing 
across a single set is shown in Table 2. 

Natural Language Processing to Calculate a Semantic 
Centroid 
In two studies, we considered a total of 1609 facial muscle 
activation configurations. Of these, 218 passed all stages of 
human evaluation and computational analysis to be deemed 
recognizable expressions. Images with positive results can 
be said to have high ecological validity, making them more 
suitable for real-world applications. In addition, we 
performed a test of two NLP algorithms: Lesk from 
Similarity for WordNet, and GloVe (Global Vectors for 
Word Representations). As outlined in the Semantic 
Similarity Validation subsection, we scored 156 expression 

Figure 3. Phase two of the AMT labeling studies asked participants to pick the single-word label that best describes 
an expression. Guidelines were given on “reading” the face and word selection. A neutral face, with no facial muscle 

activation, was always shown for comparison to the expressive image. 
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word pairs using both algorithms and calculated the 
Spearman’s correlation coefficients against human ratings 
of synonymy. GloVe performed best, rs = .30, p < .001. 

GloVe is an algorithm that populates the x and y axes of a 
multidimensional matrix (Euclidean vector space) with a 
vocabulary derived from a given corpus. The nonzero 
number of times each word occurs together with another 
word in the corpus is calculated and recorded in the matrix. 
The number of words in the vocabulary determines the 
number of dimensions (frequency vectors). To find 
semantic relatedness GloVe uses a cosine similarity 
measure (shown below) to compute the distance of cosine 
angles between two words in a multidimensional context 
vector space [46]. Here X and Y represent frequency 
vectors, with n elements [63]: ݕݐ݅ݎ݈ܽ݅݉݅ݏ =  cos(ߠ) =  ܺ ∙ ܻ‖ܺ‖‖ܻ‖ = ∑ ܺiܻi

௡௜ୀଵඥ∑ ௜ܺଶ௡௜ୀଵ  ඥ∑ ௜ܻଶ௡௜ୀଵ  

GloVe is based on the distributional hypothesis, which 
states that words with similar meanings tend to occur in 
similar contexts. If we observe two words that frequently 
occur together, we can assume they mean similar things, if 
they frequently co-occur with a third word. That word 
creates context, which provides the foundation for 
determining semantic relatedness using this algorithm [63]. 

Often while discussing semantic distance in word space 
vectors, semantic similarity and semantic relatedness are 
used interchangeably. Here we would like to emphasize the 
differences between the two terms in relation to this study. 
Semantic similarity is a type of semantic relatedness. Any 
two words that occur together in a text can have a 
meaningful semantic relationship if they share attributes. 
For example, two semantically related words might be 
synonyms, meronyms, hyponyms, or even antonyms and 
still display similarity. They can also be words that 
functionally relate or are frequently associated (e.g., “pen” 

and “paper”). For our purposes, semantic similarity is used 
to designate synonyms [63]. 

Based on results from [46], the default vocabulary and 
vector files were replaced with those of the chosen 
Wikipedia 2014 + Gigaword 5 corpus, a 300-dimensional 
pre-trained word vector and vocabulary set. The standard 
GloVe-1.2 cosine similarity distance python algorithm was 
altered to: accept two words as distinct input instead of a 
single word or multi-word phrase, print only the similarity 
score for the indicated word pair instead of all related 
words and scores, print an error line for any words not 
found in the vocabulary, and print a score of one instead of 
negative infinity for a word paired with itself. 

Hierarchical Agglomerative Clustering 
In developing our method, we argue that a good label set 
should group well around the top label, which is the word 
with the highest summed cosine similarity score. To check 
the coherence of our label sets, we executed a series of 
steps based on hierarchical agglomerative clustering. This 
clustering method performs a sequence of binary joins 
starting at the leaf level and continuing until all the base 
elements have been connected in a tree, or dendrogram. A 
visualization of the dendrogram allows the viewer to see 
natural groupings that might exist in the data, and explore 
clustering at various levels of granularity.  

Hierarchical agglomerative clustering algorithms for the 
analysis of documents and other texts nicely depict 
semantic relatedness. However, we have found that the task 
of finding the “best” label out of a set of individual words 
is not addressed in the NLP literature. We chose 
hierarchical agglomerative clustering as a secondary step to 
validate the coherence of our label sets because the method 
accommodates varying degrees of heterogeneity that exist 
between sets. Specifically, the number of clusters created 
per set can differ based on how much intra-set dissimilarity 
exists. Alternative clustering methods, such as k-means, 
require a static number of classes to be determined. 

Label Summed Weight Label Summed Weight Label Summed Weight 

hopeful 31.7059 grateful 9.6560 distressed 6.4927 

bemused 31.0547 fearful 9.5687 uncertain 5.8384 

happy 23.8122 timid 9.2012 fawning 4.7292 

cheerful 21.9200 sorry 9.0905 aroused 4.3909 

glad 20.1252 relieved 8.3232 ruffled 4.2597 

friendly 18.8266 cheery 8.3161 abashed 4.1450 

sympathetic 18.3660 sheepish 7.6618 questioning 3.5559 

optimistic 10.6255 encouraging 7.0095 tender 2.5739 

elated 10.4330 exhilarated 6.9536 grimacing 2.5404 

overjoyed 9.7151 childlike 6.6897 aspiring 1.3912 

 
Table 3. The list of unique input words for the expression “hopeful,” with summed word vector cosine scores of 

semantic similarity for each. Semantic similarity considers features of relatedness beyond strict synonymy. 

Label Summed Weight Label Summed Weight Label Summed Weight 

hopeful 31.7059 grateful 9.6560 distressed 6.4927 

bemused 31.0547 fearful 9.5687 uncertain 5.8384 

happy 23.8122 timid 9.2012 fawning 4.7292 

cheerful 21.9200 sorry 9.0905 aroused 4.3909 

glad 20.1252 relieved 8.3232 ruffled 4.2597 

friendly 18.8266 cheery 8.3161 abashed 4.1450 

sympathetic 18.3660 sheepish 7.6618 questioning 3.5559 

optimistic 10.6255 encouraging 7.0095 tender 2.5739 

elated 10.4330 exhilarated 6.9536 grimacing 2.5404 

overjoyed 9.7151 childlike 6.6897 aspiring 1.3912 

 
Table 2. The list of unique input words for the expression “hopeful,” with summed word vector cosine scores of 

semantic similarity for each. Semantic similarity considers features of relatedness beyond strict synonymy. 
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Analysis with this technique requires a distance matrix as 
input, which is easily generated by subtracting each of our 
cosine similarity scores from one. This transformation 
results in distances that range from zero, indicating 
complete similarity (i.e. same word), to an upper limit of 
two, which would represent an exact opposite. In practice, 
the maximum distance for any word pair was 1.3318 and 
the mean was 0.7665 for Study One. Study Two had a 
maximum distance of 1.1767 and a mean of 0.6497. The 
low upper bounds are likely due to labels having a degree 
of relatedness as facial communication descriptors.  

To determine how best to perform clustering on our 
labeling data, two experts rated 15 sample label sets as 
likely to belong to a strongly grouped set, a poorly grouped 
set, or a mixed set. For testing, five sets per category were 
analyzed using Matlab with the Machine Learning and 
Statistics Toolbox. Experimentation led to the empirical 
determination that a dendrogram cutoff height of .8375 
generates approximately the same number of semantic 
clusters expected by human experts. The cutoff height 
severs cluster connections above the specified level, 
leaving a varying number of smaller groupings (Figure 4). 

Having established that a cutoff height of .8375 produces 
the most cohesive clusters for our data, we applied it to our 
15 sample dendrograms, and then calculated the label count 
for each cluster. The average number of clusters was 4.4, 

and ranged from 2 to 7, matching our predictions. As 
implied by our requirements for a label set to be good, we 
want to see that, regardless of cluster count, the large 
majority of labels fall into a single cluster. For a label set to 
fail, the labels must either be highly dispersed among all 
clusters, or a large proportion of the label set must be split 
between several clusters. 

To obtain an estimate of the level of membership in the 
main cluster required to indicate good clustering, the 15 
samples were divided into two groups: one with high 
counts in a single cluster and one with high counts in two 
clusters, plus a single sample in which counts were 
dispersed among many clusters. Based on observations of 
membership in well-formed groups, we put in place a final 
filtering step in which sets with primary cluster 
membership <= 75% were thrown out. This value can be 
viewed as representative of the recognition rate, and is well 
aligned with accuracy levels seen in traditional FER tests 
using naïve judges.  

Semantic Similarity Validation 
Most NLP research centers on analyzing texts to extract 
concepts [7] or perform sentiment analysis [70]. There are 
algorithms that focus instead on word relatedness. After 
testing a selection of algorithms based on both cosine 
similarity measures and ontological approaches, GloVe 

Figure 4. The dendrogram for the image depicting “hopeful”, which breaks into seven clusters. The line 
through the y-axis at .8375 shows where the clusters are “cut” from the binary tree. Of the 40 leaf elements 
31 fall into the primary cluster. At 77.5% membership in the primary cluster, this label set is near the low 

end of our floor for reliable recognition, which is 75%.
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[45] and Similarity for WordNet [49] emerged as the 
analytical devices that most closely met our needs.  

A common measure of the performance of a NLP algorithm 
is accuracy on a word similarity task, which shows the 
association between word-pair similarity scores returned by 
the algorithm and those given by human raters [46]. 
Comparisons between GloVe and several well-known NLP 
techniques indicate that it outperforms other word space 
vector models, with a Spearman’s correlation coefficient 
for ranked data ranging from rs = 47.8 to 83.6 across five 
test sets as demonstrated in [46].  The Adapted Lesk 
algorithm from Similarity for WordNet [2, 3]  is an 
algorithm which returns a similarity score for a word pair 
based on the number of shared words in their WordNet 
definitions. The Adapted Lesk algorithm was tested on a 
word sense disambiguation task, the results of which 
cannot be directly contrasted with a similarity task.  

Accordingly, we constructed a word pair set specific to our 
problem and acquired scores from human raters on AMT as 
the basis for our own comparison. To select the words used, 
all label pairs from Study One were assigned synonymy 
scores using both Lesk and GloVe. Unlike other algorithms 
available in Similarity for WordNet, the Lesk measure 
makes calculations across synset part of speech boundaries. 
However, the preponderance of nouns in WordNet renders 
such correspondences less accurate than comparisons made 
within the same part of speech [2, 3]. To counter this effect, 
if the word sense was unaltered we transformed labels to 
adjective form for more consistent scoring. 

After calculating the summed scores of each label, the top-
ranked 10% of unique labels from the combined sets of 
computations were selected for testing on AMT, giving 156 
constituent words. Each label was randomly paired with 
another from the list for a total of 156 pairs. Two same-
label pairs were included as gold standard questions. 
Workers were instructed to rate word pairs based on 
semantic similarity on a scale from 0 (complete opposites) 
to 10 (same or interchangeable words). Fifteen workers per 
word pair were paid $.10 per rating to complete the task. 
Ratings that fell outside of 1.5 times the interquartile range 
for each pair were discarded prior to averaging the results.  
After trimming, the number of responses per pair ranged 
from 9-15, with an average of 14.45. 

The 156 pairs were then assigned synonymy scores using 
both Lesk and GloVe. Because Lesk calculates scores on a 
theoretical continuum from 0 to infinity, while GloVe 
ranges from -1 to 1, a Spearman’s rank correlation was 
calculated to compare results from both algorithms to the 
averaged scores provided by AMT workers.  

LABELING AND SEMANTIC SIMILARITY RESULTS 
Labeling Results 
In the first phase of each of the two expression 
identification studies described in the previous section, 
images were judged by naïve workers crowdsourced 
through AMT platform. A positive vote by two out of three 

participants determined which FEs were deemed 
naturalistic. Examples of three reliably recognizable FEs 
from phase one of Study One are shown in Figure 5.  

In the second phase, we gathered single word label sets that 
approximately 40 participants per image felt best described 
what the FE was communicating. We generated 40 HITs 
per image. HITs could be completed by qualified workers 
at their discretion. Most sets of 40 hits were completed, but 
some garnered as few as 37 responses. 

Label sets were processed using the GloVe (Global Vectors 
for Word Representations) word vector cosine similarity 
algorithm, modified to produce pairwise similarity scores 
between all labels in a set. After scoring, label sets were 
analyzed for coherence using hierarchical agglomerative 
clustering, and passing sets had their scores summed as 
described in the Natural language processing to calculate a 
semantic centroid sub-subsection.  

From the passing sets, the two studies collectively 
produced 51 unique top labels (Table 3). In several 
instances, different images had the same semantic centroid. 
Overlap in label assignments may mean that workers 
selected less descriptive words more easily retrieved from 
memory rather than using the suggested thesaurus, and 
could indicate that FE mapping is not one-to-one.  

Study One 
1380 images displaying three AU activations were assigned 
to AMT for testing in Phase One. AMT judges chose 341 
images as recognizable expressions, which then went on to 
Phase Two testing for label acquisition. Hierarchical 
agglomerative clustering returned 157 passing and 184 
failing label sets. Over all 261,007 label pair similarity 
scores, the minimum similarity score was -0.3317 and the 
maximum (excluding same-word pairs) was 0.8901 on a 
scale from -1 to 1.  

Study Two 
In Study Two, 229 images displaying two AU activations 
were tested in Phase One. Out of 114 label sets that went 
into Phase Two, 63 passed the clustering method and 51 
failed. A minimum and maximum similarity score of           
-0.0001 and 0.8776 respectively were found from the 
101,334 total label pair similarity scores. 

Semantic Similarity Results 
The purpose of this study was to evaluate how the Lesk and 
GloVe NLP algorithms score expression word pair 
similarity in relation to human raters. A Spearman’s rank 
correlation was calculated to determine how closely the 
synonymy ratings the algorithms generate match human 
notions of similarity. Lesk performed poorly, rs = -0.02, p = 
.76, showing a slight negative association between Lesk 
scores and human evaluations. GloVe performed much 
better, rs = .30, p < .001. While the association between 
GloVe scores and human ratings of our label pairs is much 
lower than those reported in the authors’ own testing [46], 
it remains the best choice of automated methods we tested. 
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CONCLUSIONS AND FUTURE WORK 
FE mapping has traditionally been a hard problem that was 
solved by using large sets of photographs annotated by 
experts as input to machine learning algorithms. This paper 
describes the design of a crowdsourced FE mapping system 
that uses free response label sets to derive a meaningful 
textual description of FEs, which are generatively modeled 
on a 3D avatar parameterized with action unit 
representations of muscle movements. Initial testing offers 
a strong indication that it is possible to create a broad 
lexicon of nuanced FEs with associated signal value labels. 

Two studies, using 1609 initial test images, returned 455 
FEs considered realistic by AMT workers. Of those, 218 
had strongly clustered label sets and were assigned a single 
“best” label as the semantic centroid, 51 of which were 
unique. However, images labeled as one of the six basic 
emotions accounted for 68 out of 157 images in Study One 
and 27 out of 61 images in Study Two. By employing a 
subset of AUs in the image generation process that was 
defined, in part, by the FACS AUs listed in the Emotion 
Prediction table [17], we may have predisposed our model 
toward expressing variants of basic emotions. In contrast to 
work that focuses solely on FEs as conveyers of emotion, 
however, our framework also yielded terms that represent 
internal states, like tired, or mindsets, such as curious.  

Determining the semantic centroid of a set of words was an 
unexpectedly difficult task—no rigorously defined process 
for doing so was found by the authors. Establishing an 
objective mechanism to perform this calculation so a 
primary label for a response set could be selected became a 
substantial part of testing MiFace. The hierarchical 
agglomerative clustering method we developed to test 

whether label sets are internally coherent and have a single 
semantic centroid is intuitively satisfying, as it allows for a 
natural ordering of the relatedness between labels, and is 
easily understood as a visualization. In combination with 
calculating summed all-pairs cosine similarity scores, we 
have established a unique method of analyzing free-
response label sets for coherence and meaning. 

Figure 5. From left to right, the avatar’s “neutral” face displaying no muscle activation, alongside the expressions 
“embarrassed,” “curious,” and “hopeful.” All 218 recognizable expressions are documented in the appendix.  

AU Weight

1 0.7 
12 1.0 
17 0.8 

AU Weight

L2 0.6 
7 1.0 

 

AU Weight

1 0.7 
12 1.0 
L14 0.7 

Unique Labels 

amazed disapproving sad 
amused discouraged satisfied 
angry disgusted scared 

annoyed eager shocked 
anxious embarrassed skeptical 

apprehensive enraged smug 
arrogant excited startled 

blase fearful stunned 
bored frightened surprised 

cheerful furious suspicious 
concerned happy tired 
confused hopeful uneasy 
contented interested unimpressed
curious joyful unsure 
dejected outraged upset 
delighted pleased vindictive 

disappointed puzzled worried 
   

 Table 3. The 51 unique expression name labels 
identified by our set analysis method. 
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Applications to interactive systems for this lexicon 
development framework include modeling believable facial 
behaviors with virtual humans and greatly expanding the 
repertoire of expressions that can be identified by 
automated FER. Virtual humans can augment a wide range 
of human activities, acting as digital assistants, teaching 
coaches, expressive video game characters, or caregiver 
aides. Automated FER enables feedback for smart software 
such as interactive digital learning platforms, custom 
recommender systems, marketing, and security systems, 
among other assistive systems. 

There are several avenues for expanding upon this work. 
Our label processing methodology is constrained to single 
word descriptors. An obvious improvement is to accept 
compound labels and phrases. Additionally, we could 
provide judges with synonyms to their free-response 
choices directly within the test environment. Future studies 
will include FEs generated from a greater number of AUs 
at varying activation levels, and incorporate animation 
rather than being limited to static images. We also aim to 
expand to a larger word corpus such as the Common Crawl, 
which has 42 billion tokens of web data and 1.9 million 
words of vocabulary, and integrate ontological features to 
improve synonymy scores as described in [36].  

Finally, the avatar needs to be redeveloped for improved 
realism. Desired changes include the incorporation of skin 
wrinkles, higher-fidelity surface textures, and better 
representation of difficult AUs such as 23, lip tightener. 
Once it has been redesigned, broader testing of responses 
across age, gender, race, and ethnicity in both the 
respondent populations and avatars represented can be 
performed. However, our primary goal remains building a 
foundational, ground-truth lexicon of FE mappings using a 
single avatar.  
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