
Maximizing Coverage of EMS services in New York City using a
Double Standard Model

Henry Dinhofer
Courant Institute of Mathematical
Sciences, New York University

New York, NY
hld259@nyu.edu

Prateek Sappadla
Courant Institute of Mathematical
Sciences, New York University

New York, NY
pvs266@nyu.edu

Lakshminarayanan
Subramanian

Courant Institute of Mathematical
Sciences, New York University

New York, NY
lakshmi@cs.nyu.edu

ABSTRACT
We incorporate a deterministic modeling algorithm, the Double-
Standard Model (DSM) to recommend optimal ambulance place-
ment over New York City. Then we tested our model on several
different days in 2016, with data from NYC EMS Ambulance dis-
patch. The DSM model is able to place ambulances in all locations
and come up with ambulance placements that satisfy 95% cover-
age or better on both the lowest demand day and highest demand
days of 2016. We modified DSM to include the capacity constraint
which accounts for the number of cases an ambulance can serve in
a particular time frame to better encapsulate demand for an area.
We build flexible models that can be more specifically customized
to the various needs of ambulance placement.

KEYWORDS
ResourceAllocation, Ambulance Placement, Double StandardModel,
New York City, Maximal Covering Problem

ACM Reference Format:
Henry Dinhofer, Prateek Sappadla, and Lakshminarayanan Subramanian.
2018. Maximizing Coverage of EMS services in New York City using a
Double Standard Model. In Proceedings of ACM SIGKDD conference (MUD3).
ACM, New York, NY, USA, Article 4, 7 pages. https://doi.org/10.475/123_4

1 INTRODUCTION
Ambulance response times matter. Placing emergency medical am-
bulances in the right spot is critical to reducing these times. We
built an ambulance placement machine that places ambulances, in
the context of New York City. Our machine utilizes a modified ver-
sion of the Double Standard Model (DSM) proposed by Gendreau
et al. This allows for a flexible, scalable, unbiased and more reliable
model.

In New York City over 7,000,000 ambulance drives have been
dispatched over the past 5 years. Recent research inmedical journals
indicates that the time these ambulance rides take to reach a patient
has been directly correlated to health outcomes[9, 13]. We decided
to test out placement of ambulances on a map, utilizing the Double-
Standard Model (DSM), a model that incorporates standards of
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coverage as well as cooperation, capacity and specificity with sub-
coverage elements.

The model is flexible because it can work with varying num-
bers of ambulances. It is scalable because works with hundreds of
demand points. It is unbiased because democratizes resources to
focus on all demand and not the few high demand points. It allows
a third party to set the criteria for a given day, and computes the
entire ambulance placement for the city.

We’ve introduced a capacity constraint k that certifies demand
can be achieved in a region. This certification of a region is amongst
several adjacent regions a local maxima, that more comprehensively
addresses demand factoring in nearby ambulances.

The need for decreased ambulance response times coincides with
the need for optimal ambulance placement. Ambulances if placed in
the right position, will be able to cover more cases while also being
able to reach them faster and within the current legal standards.
The system we built allows for wider levels of flexibility, is just
as durable as existing solutions and could be more fine tuned to
meet the various needs and demands of the Fire Department of
New York’s (FDNY) Emergency Medical Services (EMS) system.

From this study we discovered important trends in NYC data
such as seasonality, weekday, time-of-day and can use these insights
into applying our modeling to calculate placements for any given
day. To the best of our knowledge, this is the first study that has
looked at New York City EMS data this way.

2 RELATEDWORK
2.1 Problem
Optimal ambulance placement has been studied for several years,
and various approaches have evolved. Eaton et al. first prescribed
ambulance placement; using a Maximal Covering, they calculated
placement using a form of the Maximal Covering Location problem
(MCLP). [6]

In the years since Eaton, optimal ambulance placement has un-
dergone three generations of thought: (a) Deterministic, (b) Proba-
bilistic and (c) Dynamic modeling.

Deterministic thought is any ambulance modeling that assumes
coverage is reachable within a circular zone of driving time, and
once an ambulance’s location is optimally placed, the vehicle is set
in a static immovable position for the rest of the day. P-centering,
Maximal Covering Location Problem (MCLP), P-median solutions
all contributed to tenable applications for optimal ambulance place-
ment [4, 10]. This coverage thinking has been continuously im-
proved upon. Recently the Double Standard Model (DSM) was

https://doi.org/10.475/123_4


MUD3, August 20th, 2018, London, UK H. Dinhofer et al.

proposed by Gendreau et al.[7] and has since been implemented
in regions in Belgium and nearly all of Austria, [12] as well as the
cities of Vienna[14], Montreal [12] and Tijuana [5]. Subsequent
analysis of these coverings has also taken call data and looked into
whether time-of-day trends affect ambulance placement.[14, 15]
We agree that patients move their location during the day and as
such our ambulances need to move accordingly to respond to that
shifting demand. While initial results have been inconclusive, given
more accurate call locations we think that specific sub-regionality
trends can emerge. Dibene et al.’s [5] paper aggregates time-of-day
over a yearly window. In our initial analysis we found out that both
monthly seasonality and also weekly trends such as weekday or
weekend call volume did appear.

Probabilistic thought groups ambulance placement around the
use of a percent likelihood that represents: an ambulance’s like-
lihood it is unavailable because it has already been assigned to a
call, or a percent likelihood a demand can be reached within time
t, or factoring in neighborly cooperation as a percentage of signal
strength such as described in Berman et al.’s Cooperative Maximum
Covering Location Problem (CMCLP) [3, 11]. Berman work has not
yet been applied to the ambulance placement problem specifically
but his maximal covering for the placement of sirens on a map is
very similar to the optimal ambulance location application. There is
an opportunity here to explore more into overlapping and coopera-
tive set coverings. Both ambulance unavailability and cooperation
were the inspiration for our capacity (k) and cooperative thinking
see Section 4.

Dynamic shifting is the newest trend in ambulance modeling.
This is applied to realtime and live reorganization. When an am-
bulance is no longer available to cover an area due to assignment,
additional processing is done to determine the value of "shifting"
the other waiting ambulances to better respond to demand. Us-
ing estimates of future demand, the above mentioned probabilistic
modeling of ambulance busyness is incorporated into determin-
ing whether an ambulance should be moved. Dynamic ambulance
shifting has been done with a modified DSM to make a Dynamic
Double Standard Model (DDSM) [8]. Additionally studies coming
from the Netherlands point to decreases in response time on av-
erage of 16-20%.[16] While these are promising and encouraging
results, we didn’t elect to dive into dynamic ambulance placement
as the current NYC system uses a deterministic and not dynamic
system for its Basic Life Support (BLS) units, the significant addi-
tional time to model such a system, as well as have higher costs than
the existing system. This is based off of intuition and conversations
with current FDNY personnel. Knowing that the FDNY, a public
government department, is reluctant to increase costs we elected
to approach the problem with an "as is" approach. Assessing the
higher expenses from higher gas usage and the higher need for
vehicular repairs, is beyond our current knowledge of the FDNY
EMS System.

2.2 Our baseline - Dibene et al [5]
Our study is an application of the DSM model to New York City
data for two different days. We looked to successful applications in
the cities of Vienna Austria, Montreal Canada, and Tiujana Mexico.
In particular Dibene et al.’s[5] work in DSM incorporated analysis

among four different time-of-day windows. They aggregated all
city-wide calls in 2014 to these time windows. Furthermore they
also made distinctions between working week (weekday) and off-
day (weekend), taking the four windows above and applying them
again making in total eight different time scenarios. Most calls
happen on weekdays during the afternoon and evenings.

The Dibene et al. paper also used a relatively low number of calls
(n = 7,746) for the entire year. This is very similar to the total call
volume in just our two days (high demand + low demand = 7,500).
Using the DSM modeling they calculated placements for number
of ambulances p (p = 6 to 22). Of note they calculated coverage as
existing within the set covering circle. Dibene’s team however did
not note whether this set covering would be adequate enough for
any given individual day. We wanted to test our covering on two
individual days, and not on an aggregate basis. Before an actual
application of DSM to New York City ambulances, we would test
out the various levels of efficacy over aggregated daily, weekly, time
of day, monthly and annual aggregate demand.

3 EMS DATASET
We applied DSM to the EMS Incident Dispatch Dataset [2], selecting
two different days to simulate the model on. One was on a day of
high demand where 4700 calls came in, and the other was on a low
demand day with 2800 calls. The NYC OpenData set consists of
7,023,225 ambulance assignments, over a period of 5 years from
January 1st 2013 to December 31st 2017. The term "dispatch" means
any time a 9-1-1 operator during the course of a call, makes the
decision to send an ambulance to drive to a demand point. All
demands were aggregated on the zipcode level, there were concerns
about potentially exposing patient information that OpenData was
circumspect with possibly breaching HIPAA compliance. All W
ambulance sites were aggregated to the zipcode level.

Analysis of the EMS Incident Dispatch Dataset was performed
using pandas an open source Python package for large data analysis,
and Jupyter notebook for compilation. Data for the two days was
then fed into our model that processed the coverage using the
python linear programming tool PuLP. It returned a list of zipcodes
and the number of ambulances at that zipcode that ambulances
would be placed at to provide optimal coverage. It also returned the
percent of coverage the placement achieved.

The Arc GIS (Geographic Information System) mapping tool was
used to map the frequency counts of calls by zipcode to a map of
New York City. Zipcode polylines for Arc GIS were referenced by its
earliest known locations from 2010 city and Baruch College data. To
calculate the travel time between two zipcodes required converting
zipcodes to GPS coordinates of the centroid of the zip. GPS Location
points for the centroid of the zipcode were referenced from 2013
Government Data. [1]. The GPS coordinates of these centroids were
then used to calculate travel times ti j between two zipcodes via
the Google Distance Matrix API. While the Distance Matrix tool
provided the ability to forecast travel times at specific times in the
day, the authors of this paper decided to go with calculating travel
times at 2:00pm on a Monday as additional overhead was required,
and the predictions tool was prone to making subtle mistakes such
as giving a nonzero number for driving time as the time between
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Variable Description
V Set of demand points. Zipcodes in our model
W Set of ambulance sites. Zipcodes in out model
ti j Travel time between point i and point j
x j Number of ambulances placed at demand point j
r1 First time standard
r2 Second time standard
p Total number of available ambulances
k Number of calls serviced by an ambulance in a day

W r1
i {j | ti j ≤ r1}

W r2
i {j | ti j ≤ r2}
di Number of calls(demand) at demand point i
zi

∑
j ∈ W r1

i
x j

yi
∑
j ∈ W r2

i
x j

Table 1: Description of Variables used in the model

demand point i and ambulance site i, to the same point tii = 0
cannot have any travel time.

4 MODEL
We use a variation of the Double Standard Model[7] to determine
an optimal placement for the ambulances in New York City. The
terminology used to define the model is described in TABLE 1.

The problem we are looking to solve is that of placing p am-
bulances optimally across the available ambulance sitesW such
that we obtain maximal coverage within a time standard r1 of the
demand across the set of demand pointsV . Additionally, all demand
should be adequately covered within a second more lenient time
standard r2.

The capacity available to serve a demand point i is given by the
product of the number of ambulances within a time radius of r1 and
the average number of cases that can be served by an ambulance
which is given by k . We consider a case to be adequately covered if
and only if there is a capacity of 2 available to serve it. Generally,
an ambulance is within r1 time range of multiple demand points.
Thus it is considered as being available to serve the calls originating
out of multiple demand points. The double coverage constraint is
placed to prevent the model from overestimating the capacity of the
ambulance placement that may arise due to the same ambulance
being available for multiple demand points.

The introduction of the capacity constraint k is an important
addition of our work over the standard DSM model. The standard
DSM model considers all cases at a demand point to be covered
if there is an ambulance within time r1 from the demand site. We
feel this does not sufficiently capture the complexity of the real
world scenario. This assumption will break in the case when there
are much more calls originating from a demand point than what a
single ambulance can serve. The capacity constraint k provides a
simple but better way of modeling the capacity available.

The variable zi represents the number of ambulances available
to serve the demand point i within a time period r1. Similarly, yi
denotes the number of ambulances available to serve the demand
point i within a time period r2.

We are looking to maximize the coverage that can be covered
atleast twice within a time standard of r1 while ensuring that atleast
α% of the demand in each zipcode is covered twice within r1 and
all demand is covered atleast once within a second time standard r2.
The optimization problem for maximizing the coverage by optimal
placement of ambulances can then be formulated as below:

Maximize (
∑
i ∈ V

min

(
di ,

kzi
2

)
)

subject to the constraints

∀ i ∈ V , di ≤ kyi (1)

∀ i ∈ V ,
kzi
2

≥ αdi (2)∑
j ∈ W

x j = p (3)

0 ≤ x j ≤ pj (4)
∀ j ∈W , x j is an inteдer (5)

The objective function is a summation over all demand pointsV .
For each demand point i ∈ V , we take the minimum of the demand
at that point (di ) and the coverage capacity available to serve that
point. This minimum is to ensure that if at a particular point, the
available capacity is more than the demand at that point, we do
not over score our model for that point. The constraint (1) is the
second covering constraint given by the double standard model
which enforces that all demand is covered once within a second
time standard r2. The constraint in equation (2) ensures that atleast
α% of the demand at each demand point is covered by the placement
of the ambulances. This constraint prevents the concentration of
ambulances in a few places with very high demand. Constraints (3)
and (4) ensure that a total of p ambulances are used and at most pj
ambulances are located at site j respectively.

5 RESULTS
This section describes the coverage values obtained for different
values of the parameter values α and pj for two different days rep-
resenting high and low demand days. Table 2 details the coverage
values for a high demand day with α = 0.95 and pj = 5. Table 3 doc-
uments the coverage obtained by increasing pj to 10 while keeping
α the same. It shows an interesting scenario whereby increasing
pj allows us to satisfy demand at a lower cumulative capacity. The
coverage values for α = 0.7 for a high demand day are detailed in
Table 4. Finally, Table 5 shows that the demand can be satisfied with
a much smaller number of ambulances on a day of low demand.
The above mentioned results are described in further detail in the
following subsections.

5.1 DSM
The United States EMS Act prescribes that 95% of the demand
should be covered within 10 minutes. With this in mind, we set
r1 = 10mins and α = 0.95. The second time standard within which
all demand is to be covered was set to r2 = 15mins . The maximum
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number of ambulances at each site was restricted to pj = 5. Lets call
this initial configuration of the parameters asC1. We tried different
combinations of values for the total number of ambulances p and
the daily capacity of an ambulance k . The total number of calls
can vary greatly depending on the day. On certain days, when the
demand is highest, the total number of calls in a day was observed
to be as high as 4700. On a day when the demand is lowest, the
number of calls was observed to be around 2900. The results for
the configuration C1 of the parameters for a day with the highest
demand are given in Table 2.

In Table 2, we observe that the cumulative capacity of the am-
bulance system for values p = 250 and k = 21 is less than that for
the values p = 400 and k = 15 , a 250 × 21 < 400 × 15. However we
observe that although the problem is feasible for the former config-
uration, we get an Infeasible result for the latter. This behavior can
be understood by looking at Figure 1.

Figure 1 is a histogram with the X-axis representing the number
of calls in a day and the Y-axis representing the number of zipcodes.
We can see from the plot, that there are a few zipcodes with very
high call volume whereas most of the zipcodes have very few calls.
The capacity at each ambulance site is restricted by the maximum
number of ambulances available at the site. In configuration C1,
this is restricted to 5. Thus for a lower value of k , the capacity at
any of the sites is not enough to meet the constraint (3) for the
high demand zipcodes which results in an Infeasible state. This can
be remedied by increasing the maximum number of ambulances
allowed at each site. Table 3 shows the results obtained by setting
pj = 10.

In order to test the flexibility of our model, we tried a configura-
tionC2 with α = 0.7. Table 4 details the results for the configuration
C2. By decreasing α we are able to cover more than 92% demand
with just 250 ambulances. However, by comparing Table 3 and Table
4 it can be seen that for higher number of ambulances and higher
value of k , setting a lower value of α degrades the performance.
This degradation in performance could be attributed to the fact
that with a lower α , the model becomes more lenient and ends
up placing more ambulances in zipcodes that are more spaced out
with fewer overlapping coverages. Thus making the optimization
problem less strict actually degrades the total coverage obtained.

Table 5 describes the results of running the model with configu-
rationC1 on a day with the lowest observed number of calls. It can
be seen that on days with low demand, a very high coverage can be
obtained with much fewer ambulances. Thus based on the demand
expected for a day, the total number of ambulances deployed in the
city can also be optimized using this model.

5.2 Comparison with Dibene et. al
The Double Standard Model as applied in Dibene et. al is our base-
line comparison. As mentioned before, they segmented ambulance
placements by eight different times segments during a week. Their
formulation remains consistent with prior DSM formulations, the
goal being to maximize the number of demand points reachable at
least twice within a given time standard r1. This r1 is represented
as a yes or no action. Either a demand point exists within a circular
range of coverage or it does not. This leads to inflated expectations
about an ambulance’s ability to respond to a call. For a given day,

our DSM shows the actual coverage available, not a loose grouping
of covering whereby we assume an ambulance or two can achieve
an extraordinary feat such as meeting more than > 70 calls. We
propose a realistic covering.

K provides an upper bound to the demand that is realistically
reachable. Either it is just the demand that is serviceable or the
total demand at demand point di . Our model differs from Dibene’s
in that it uses the raw number of EMS calls to calculate coverage,
and not a weighted sum. Thus we can count an accurate measure
of EMS calls that are reachable.

5.3 How many ambulances do you need?
The p number of ambulances is initially set at the start of our
model. From our results, p increased and decreased depending on
the overall demand that day, as well as the capacity k for each
ambulance.

5.4 What is the impact of changing k?
Changing k positively increases potential coverage. The more de-
mands that an ambulance can reach the more total coverage it will
provide.

5.5 What is the impact of changing p?
In general, increases in the number of ambulances provided in-
creases coverage. In Table 3 there isn’t an increase in coverage due
to the value of pj constraint (4). Ambulances can be placed at sites
but they are limited by the maximum number placeable for any
given site. This tells us that pj = 10 ambulances wasn’t enough to
meet demand at a high demand point.

5.6 Additional Results
Initial analysis revealed a few trends in New York City’s emergency
medial service. As described by Dibene et al., time of day directly
affected the number of calls that are serviced. The authors of this
paper experienced similar ratios for the number of calls during the
four time sub- segments (Figure 2). What was most prevalent was
that the calls occurred most in the afternoon, followed by evening,
then morning and finally as EMS professionals call it, the "Third
Watch" that is the watch that happens late at night.

Differences between the day in the week were minimal. Figure 3
describes each day of the week and the number of calls for each day.
There is a 7% difference in weekday calls and off-days /weekend
calls, ∆ n = 73,775. This is a minor factor in ambulance demand.

We also looked into possible seasonality trends. Figure 4 de-
scribes the breakdown of calls over a monthly window, and while
there is a noticed difference between mid-year (most) and winter
months (least), we could only establish broader seasonality trends.
From the highest month (July) to the lowest (February), we found
a 16% difference, ∆ n = 96,156.

Finally geographic analysis with Arc GIS (Figure 5) shows that
there is significant clustering of calls in a few regions. This is
weighed towards a handful of zipcodes out of the 209 possible
zipcodes. Since the frequency with which a few zipcodes call far
outweighs that of most others, it is clear that demand is highly
concentrated amongst a few zipcodes.
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Number of Ambulances (p)
250 300 350 400 450

15 Infeasible Infeasible Infeasible Infeasible Infeasible
18 Infeasible Infeasible Infeasible Infeasible Infeasible
21 99.80716 99.81787 99.81787 99.86072 99.86072

Daily Capacity
of Ambulance

(k)
24 99.89286 99.89286 99.89286 99.91429 99.91429

Table 2: Percentage coverage with parameters settings as follows. r1 = 10mins, r2 = 15mins, α = 0.95, pj = 5. High Demand day

Number of Ambulances (p)
250 300 350 400 450

15 Infeasible Infeasible 99.70002 99.7429 99.7750
18 99.7643 99.7643 99.7643 99.7643 99.7643
21 99.80716 99.81787 99.81787 99.81787 99.81787

Daily Capacity
of Ambulance

(k)
24 99.89286 99.89286 99.89286 99.91429 99.91429

Table 3: Percentage coverage with parameters settings as follows. r1 = 10mins, r2 = 15mins, α = 0.95, pj = 10. High Demand Day

Number of Ambulances (p)
250 300 350 400 450

15 90.36855 90.36855 90.61496 91.53632 92.4683
18 90.8078 90.8078 91.23624 92.73623 93.0148
21 92.2327 92.43625 92.69338 93.7433 93.8397

Daily Capacity
of Ambulance

(k)
24 92.37197 92.82194 93.7433 94.40754 94.7075

Table 4: Percentage coverage with parameters settings as follows. r1 = 10mins, r2 = 15mins, α = 0.7, pj = 10 High Demand Day

Number of Ambulances (p)
200 250

15 99.82251 99.82251
18 99.87575 99.87575
21 100.0 100.0

Daily Capacity
of Ambulance

(k)
24 100.0 100.0

Table 5: Percentage coverage with parameters settings as follows. r1 = 10mins, r2 = 15mins, α = 0.95, pj = 10 Low Demand Day

Figure 1: Histogram of count of calls on a high demand day
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Figure 2: Time of day and count of calls during a 6 hour time
interval.
3 = 12:00pm - 5:59pm (Afternoon), 4 = 6:00pm - 11:59pm
(Evening),
2 = 6:00am - 11:59am (Morning), 1 = 12:00am - 5:59 am (Night)

Figure 3: Day of the week and count of calls for that day
1 = Monday, 7 = Sunday

6 DISCUSSION
The DSM model allows for any given demand point to be covered
minimally within time standard r2, while maximizing the demand
covered at least twice within time standard r1. We were most sur-
prised by the fact that on a low demand day, 100% of demand points
could be reached by the double standard with as few as 200 ambu-
lances. This contrasts greatly with demand at a high demand day,
where more than 450 ambulances are required to meet existing U.S.
EMS standards.

Seasonality, as represented by month-to-month needs could be
factored into the broader number of ambulances needed for any
given month.

While we tested our data on two pre-selected days, we would like
to extend our model to work over aggregated data. As mentioned
earlier this model could be used to test out the various levels of
efficacy over aggregated daily, weekly, time of day, monthly and
annual aggregate demand. It wouldn’t take much to convert our

Figure 4: Seasonality trends, Counts of calls for a given
month.
1 = January, 12 = December

Figure 5: Number of call counts for every zipcode

model to a broader picture. We would have to multiply capacity k
by some n number of days, but the remaining constraints would
remain all within the modeler’s control and discretion to fine tune.
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Our study has several limitations. The location data of the am-
bulance calls available to us is only at the zipcode level. We do not
have location data at a finer level. Zipcodes are too big a unit to get
an effective placement of ambulances. It would be interesting to
get location data of the demand points and a larger set of possible
ambulance sites and then fit the same model for this finer level
data. Also, the use of finer data points will also enable us to get
better estimates of the travel times thereby leading to more accurate
models.

We were also limited by the lack of knowledge of the current
NYC EMS system. Current ambulance placement sites W were
unknown so we were unable to establish a baseline to compare our
results to.

7 CONCLUSIONS AND FUTUREWORK
We have modeled NYC EMS data using the DSM model for optimal
ambulance placement. We tested it on two different days, and rec-
ommended two unique ambulance placement regimens for both of
those days.

Another interesting extension of this model would be for a tiered
ambulance system consisting of both Basic Life Support and Ad-
vanced Life Support Ambulances. The Basic Life Support ambu-
lances would be required to cover all the calls while the Advanced
Life Support ambulances would cater to high severity calls. A future
task is to develop an extension of the double standard model with
these two types of ambulances and different time standards for each
type of ambulance.

In the future, we aim to simulate our results and compare them to
the existing system, but as mentioned at the end of the last section
we would need both more specific data about current ambulance
placements, as well as specific location data (even if its generalized
to a city block) for calls. This would then be run on a scheduling
simulation. From there we could get specific numbers to whether
response times are lowered, coverage is increased, and whether
our model is definitively an improvement over the existing EMS
ambulance placements. Eaton once said "simulations are great but...
such models are descriptive rather than prescriptive." We agree with
his sentiments as well. We would also like to possibly extend this
to test out a Dynamic modeling. The most natural extension to this
would be the Dynamic DSM (DDSM) mentioned earlier.

We also aim to run a prediction model for predicting future
demand. This could incorporate such elements as seasonality. We
initially attempted to run an LSTM to gather future predictions
but it required more analysis and instead chose other avenues. It
remains to be seen whether sub-regional seasonal trends may exist.
The more accurate the predictions, the better the modeling, and the
better the utilization of resources.
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