xCache: Rethinking Edge Caching for Developing Regions

Ali Raza
New York University Abu Dhabi
Abu Dhabi, UAE
araza@bu.edu

Jay Chen
New York University Abu Dhabi
Abu Dhabi, UAE
jchen@cs.nyu.edu

ABSTRACT

End-users in emerging markets experience poor web performance
due to a combination of three factors: high server response time,
limited edge bandwidth and the complexity of web pages. The ab-
sence of cloud infrastructure in developing regions and the limited
bandwidth experienced by edge nodes constrain the effectiveness
of conventional caching solutions for these contexts. This paper
describes the design, implementation and deployment of xCache, a
cloud-managed Internet caching architecture that aims to proac-
tively profile popular web pages and maintain the liveness of popu-
lar content at software defined edge caches to enhance the cache
hit rate with minimal bandwidth overhead. xCache uses a Cloud
Controller that continuously analyzes active cloud-managed web
pages and derives an object-group representation of web pages
based on the objects of a page. Using this object-group represen-
tation, xCache computes a bandwidth-aware utility measure to
derive the most valuable configuration for each edge cache. Our
preliminary real-world deployment across university campuses in
three developing regions demonstrates its potential compared to
conventional caching by improving cache hit rates by about 15%.
Our evaluations of xCache have also shown that it can be applied in
conjunction with other web optimizations solutions like Shandian,
and can improve page load times by more than 50%.

CCS CONCEPTS

«Networks — Network design principles; Public Internet; Net-
work performance evaluation;

KEYWORDS
Distributed web caching, Cache management, Web performance

ACM Reference format:

Ali Raza, Yasir Zaki, Thomas Potsch, Jay Chen, and Lakshmi Subrama-
nian. 2017. xCache: Rethinking Edge Caching for Developing Regions. In
Proceedings of ICTD °17, Lahore, Pakistan, November 16-19, 2017, 11 pages.
DOI: 10.1145/3136560.3136577

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICTD ’17, Lahore, Pakistan

© 2017 ACM. 978-1-4503-5277-2/17/11...$15.00

DOI: 10.1145/3136560.3136577

Yasir Zaki
New York University Abu Dhabi
Abu Dhabi, UAE
yasir.zaki@nyu.edu

Thomas Potsch
New York University Abu Dhabi
Abu Dhabi, UAE
thomas.poetsch@nyu.edu

Lakshmi Subramanian
New York University
New York, USA
lakshmi@cs.nyu.edu

1 INTRODUCTION

Web browsing is exceedingly slow for users in developing regions
with Page Load Times (PLTs) that can range from tens of seconds
to a few minutes [47]. There are three fundamental factors that
cause poor performance.

1. High Server Response Times: Most developing regions
have poor server infrastructure [13] and lack nearby Content Dis-
tribution Networks (CDNs). Object requests, in many cases, are
routed to servers around the world and hence cause RTTs of 1-2 sec-
onds [47]. Also, the majority of users in these regions are on high
latency cellular networks which further increase PLTs [20].

2. Limited Edge Bandwidth: Network congestion in develop-
ing regions typically occurs at the network edge in the upstream
ISP due to a combination of high contention and limited edge band-
width [11, 21, 35].

3. Web Page Complexity: Modern web pages have evolved
dramatically over the past decade with a large number of objects
fetched in parallel using several competing TCP flows to different
servers around the globe [7]. Apart from the increased number of
objects, web pages have become much harder to interpret due to
embedded scripts making it difficult for middleboxes to unearth
different forms of flow and object level dependencies [27, 41].

The challenge of web performance and coping with increasing
complexity has by itself spawned a wide array of systems [31, 42,
48], CDNs [4, 39], web transport acceleration mechanisms [36, 37,
49] and middlebox-based web optimization engines [1, 8, 9, 27, 34].
While these solutions can improve web performance, there are two
main differences in developing contexts that make gains insuffi-
cient. First, most developing regions lack good cloud infrastructure
support [38] due to cost, bandwidth and power constraints. Second,
edge nodes in developing regions are behind high latency and low
bandwidth networks which limits the amount of network-intensive
tasks that can be imposed on edge nodes. In conjunction, these two
issues reduce the benefits achievable by existing methods.

This paper describes xCache, a cloud-managed distributed web
caching architecture that proactively manages the cacheable web
content at the extreme edge of slow networks. xCache is designed
around a set of software defined Edge Caches (ECs), managed by
Cloud Controllers (CCs) with more resources and aggregate infor-
mation. The basic design philosophy of xCache is to enable the
Cloud Controller to continuously profile and learn the dynamic-
ity of objects in popular web pages and perform page-level cache
management of ECs.

ICTD ’17, November 16-19, 2017, Lahore, Pakistan

Four aspects of the xCache design make it different from con-
ventional solutions that improve web performance:

o Fine-grained Page Analytics and Object Grouping: Conven-
tional caching solutions make decisions at an object level.
xCache considers caching at the page level. Given a pop-
ular web page, xCache profiles the dynamicity of objects
in a web page and learns an object-group representation
that groups related objects with a similar level of object
dynamicity. xCache then makes caching decisions based
on these object-groups.

o Learning Page Dynamicity on the Fly: xCache uses features
of individual objects to learn the dynamicity of objects in a
web page and can achieve good predictive accuracy using
simple regression techniques.

e Centralized Edge Cache Management: Edge Caches have a
limited purview of object dynamicity across web pages and
may have limited bandwidth to perform advanced analytics
on individual pages. For popular web pages, the Cloud
Controller can determine the optimal cache configuration
of the required set of objects that need to be cached at each
Edge Cache.

o Proactive Cache Management: xCache’s Cloud Controller
proactively determines the expected liveness and utility
for each object-group. xCache also selectively pushes delta
or compressed object updates to the Edge Caches to lower
bandwidth overheads.

xCache represents a specific point in the cache design space that
is especially relevant for developing contexts that normally experi-
ence high end-to-end server latencies, have limited edge bandwidth
and face poor performance due to the complexity of web pages.
By profiling web pages using a central controller, xCache aims to
reduce the burden on ECs and to enhance their utility. xCache un-
tangles the complexity of pages and determines the optimal cache
configuration for each individual web page. We have implemented
a proof-of-concept prototype and deployed it in university cam-
puses in the UAE, Pakistan and Sri Lanka. Our evaluations have
shown that xCache can significantly improve web performance in
developing regions, increasing cache hit rates by 15%, and reducing
bandwidth usage of certain pages by more than 65%. In addition,
xCache can provide additional PLT improvements of more than 50%
compared to Shandian [43], a recently proposed proxy-based web
performance optimization solution. We also show that xCache can
work in conjunction with enhancements like Shandian and that
combining the two solutions has the potential to further improve
end-to-end web performance.

2 THE STATUS OF THE WEB

In this section we use detailed measurements of web page download
times from multiple geographic regions to illustrate the key web
performance issues in developing regions including: long server
response times, increased web complexity (i.e., many web objects
across many servers for individual pages), highly variable page
dynamicity (across and within pages), and HTTP headers as poor
approximations of actual dynamicity. We conducted our measure-
ments from two different geographic regions for comparison: Pak-
istan and the United States. To get a more holistic view of web

Ali Raza et al.

page performance, we chose around 80 web pages from different
popularity ranges. We selected 20 pages from each of the following
Alexa ranges (0-100, 100-200, 500-600, 1000-1100). We downloaded
a version of a page every 30 minutes for 30 days, consisting of the
complete set of objects retrieved from a single iteration for the
associated page. The results presented in this section are based on
this set of pages.

2.1 Object Download Times

Most web pages contain a significant number of objects with dif-
ferent file sizes, object hosting locations, content types, etc. The
individual load times of these objects, the order of the object re-
trieval and the dependencies across objects contribute to the overall
PLT of a web page. Also, certain object dependencies may cause
a web browser to stall and process specific objects before request-
ing new objects. In general, the overall time to request a single
object can be broken down into five stages: block time, DNS resolu-
tion time, connect time, wait time (for server response), and object
download time.

Figure 1 shows Cumulative Distribution Functions (CDFs) of the
web objects’ download time breakdown. We used Chrome’s devel-
oper tools to collect the results in the form of HTTP Archive (HAR)
files. Although there are subtle differences between the locations,
they share a number of commonalities. First, the CDFs of the DNS
requests and the connect times (cyan and green curves) show that
about 70% of the objects do not have any DNS or connect times
(indicated by the straight horizontal lines). This is due to the fact
that the browser does not need to repeat DNS requests for objects
with the same host and for objects that were recently requested.
As for the connect time, modern web browsers use persistent con-
nections (the TCP connection is kept alive) to download several
objects from the same server, i.e., HTTP/2. For the rest 30% of the
objects we observed some variations in the DNS resolution and TCP
connection setup times across locations, with the US exhibiting
significantly lower RTTs than Pakistan.

1.0 ‘ 1.0 ‘ Pa‘klst‘an :
0.8} 1 0.8t 1
e 0.6F 1 0.6f 1
[=)
© 0.4} 1 0.4}]
0.2f 1 0.2t 1
0.0 " L il 1 1 0.0 . L " I | 1
10~°10~4107%10-210~110° 10* 10> "10~°10~410~*10~2%10~*10° 10 10?
Time (s)
| block === dns connect wait receive — overalll

Figure 1: Breakdown of download times of web objects

Figure 1 also shows that in both locations the wait time is high
and contributes the most to the overall object load time (compared
to the red curve). The wait time corresponds to the server response
time. The US has a server response time of less than 100 ms in 60%
of the cases. In contrast, Pakistan has a server response time of
more than 100 ms in all cases. The difference is caused by lack of
nearby CDNs and because web servers are configured to respond

xCache: Rethinking Edge Caching for Developing Regions

differently based on the requester geo-location. Contrary to the
common belief that high PLTs are caused by bandwidth limitations
and high RTTs, the figure shows that the actual receive time of
objects is not the main factor in the overall PLT (both locations
show similar object receive times).

We also observe that the portion of block time has significantly
decreased over the past few years (as compared to [47]). This im-
provement is mainly through the introduction of new protocols
such as SPDY [26] (and later HTTP/2 [6]), which request multiple
web objects simultaneously using a single TCP connection. Mod-
ern web browsers have also increased the number of parallel TCP
connections that can be opened per page.

2.2 Page Load Times

The individual object load times are an integral part of the overall
PLT. Despite the fact that objects are loaded in parallel and have
dependencies on each other, long object load times cause PLTs to
be high. In general, the more objects a web page consists of, the
longer it takes to load the entire page. Figure 2 shows a CDF of
the number of objects per page for all requested sites. We observed
that around 20% of the requested pages in our sample have more
than 200 objects.

1.0
0.8

— Servers per webpage | |
== Objects per webpage

0 100 200 300 400 500 600 700 800
of servers and objects per webpage

Figure 2: Number of servers and objects per web page

We also observed that the majority of web pages’ content are
hosted on more than a single server. Regardless of the web objects’
geographical location, web browser have to initiate multiple DNS
requests for every object hosted on a different server than the origin
(where the index.html is hosted). Figure 2 shows that around 60%
of the pages have their content spread across more than 20 servers.

2.3 Web Page Dynamicity

Objects in a web page can exhibit varying levels of dynamicity. We
show four example pages from our dataset here to highlight the
dynamicity of web pages. Based on their requested URLs and the
MD5 hash values of the objects, the collected objects are classified
into three different categories:

(1) Constant objects: objects that stay the same across versions,
i.e., objects requested from the same URL and with the
same hash values.

(2) Changed objects: objects requested from the same URL, but
with different hash values, i.e., their content is updated.

(3) New objects: objects that have not been seen before, i.e.,
newly requested URLs.

ICTD ’17, November 16-19, 2017, Lahore, Pakistan

We look at the dynamicity of web pages from two different
perspectives. First, we compare all objects in every version of a
page to the first version that was recorded. Second, we compare all
objects in every version to all previous versions of the same web
page. Figure 3 shows stacked bar graphs for the four example pages.
The upper subfigure shows the comparison between version n and
version 1 and the lower subfigure shows the comparison between
version n and all previous versions [1, n — 1], where n ranges from
version 2 to version N = 1440 (48 samples per day * 30 days).

—— Constant objects —— Changed objects —— New objects}

Compared to version one Compared to version one

200
150
100

50

400
2300
a

5200

[y
(=3
(==}
[

OOCompared to all previous versions 9 00Compared to all previous versions

150
100
50

5 10 15 20 25 30 0 5 10 15 20 25 30

Time (days) Time (days)

Number of ob;

N W

==}
R-R-R-]

(a) www.vimeo.com (b) www.amazon.com

Compared to version one Compared to version one

150
100
50

iy
[SA =]
o o O
.[

15 GCompared to all previous versions

100
50
0

Compared to all previous versions

Number of objects

= =
oo w
o O O O

5 10 15 20 25 30 5 10 15 20 25 30

Time (days) Time (days)

(c) www.nextinpact.com (d) www.salesforce.com

Figure 3: Web page dynamicity

We observe that the percentage of constant objects in a web page
does not drop to zero, but rather stabilizes around a certain value.
After further analysis we found that these objects are part of the
page template (e.g., icons, logos, etc.) that do not change frequently.
From the lower figure in each sub-figure, we can observe that at
least 65% of the content in these web pages does not change and
can therefore be cached over long periods of time. Upon examining
these changes in more detail, we find that text-based objects (HTML,
CSS, JS) often only change in minor ways (sometimes just a few
lines), as observed by Wang et al. [42].

2.4 Effect of HTTP Headers

Although web caches are already widely deployed, legacy caches
suffer from several problems. Existing proxies/caches rely on HTTP
cache control headers as an input for their caching policies [17].
These control headers (cache-control, expired at, max-age, etc.) are
used by caches to decide what objects to cache and for how long.
Caches use these headers to enforce revalidation, freshness check
and other directives. The max-age directive, for example, spec-
ifies the time after which the object should be considered stale.

ICTD ’17, November 16-19, 2017, Lahore, Pakistan

These cache headers are collectively used to determine whether
an object is still fresh. If these headers are set inaccurately by the
content provider, then either network resources are wasted (due to
unnecessary refreshing of content) or stale content is served.

In Figure 4 we compare the actual change rate of an object to the
max-age set by the content provider. For this analysis we removed
objects that had no max-age and objects with a max-age larger than
one month. Also, the lower portion of the figure (in gray) is below
our sampling rate of 30 minutes. Ideally, we should observe that
most of the collected data points lie on the 45 degree line, where the
max-age matches the change rate of the objects. Instead, we observe
that the max-age is highly uncorrelated with an object’s life span.
Web publishers (or content providers) tend to substantially under
(upper left) or over-estimate (lower right) the life span of objects.

10°

~~ > %
2104 X% ;%EEXX
L
3 108 ¥
% ar
g 102

<

(S

=

210!}

Q

<

10°

109 100 10° 10° 10° 10°
Max-age time (min)

Figure 4: Actual web object change time vs. max-age header

3 XCACHE ARCHITECTURE

The xCache architecture is illustrated in Figure 5 and consists of a
set of Edge Caches (ECs) in close proximity to the users. ECs are
centrally monitored and managed by a Cloud Controller (CC). The
CC collects web page requests and performance information from
the ECs to determine the best set of web pages to prefetch and store
at each EC.

L 4

8 A e
w - @ Content
PRI e AN @ Servers
< Cloud

y ¢
Controller
«---->

Clients Internet

Edge Caches

Figure 5: xCache architecture

An EC is an enhanced HTTP network level cache that is placed
at the edge of the network. ECs could be deployed by ISPs, telcos,

Ali Raza et al.

or other large institutions that have access at these edge locations
(e.g. Facebook, Google, university campuses, etc.). To web clients,
an EC functions as an ordinary proxy or cache that receives users’
HTTP requests and in the case of a cache hit, serves the objects
directly. In the case of a cache miss, the request is relayed to the
Internet. ECs differ from conventional caches in two ways: First,
ECs are managed by the CC and are periodically updated with
web objects. Second, ECs gather access logs and periodically send
the aggregated statistics to the CC. The main goal of the CC is to
optimize the content of each EC by maximizing the EC’s hit rates
while minimizing the bandwidth used to update them. The CC has
two key components that help to achieve this, namely the Page
Profiler and Cache Manager.

3.1 DPage Profiler

The task of the Page Profiler is to determine the list of active pages
to profile and to learn the object-group representation of each active
page. The Page Profiler decides on the pages to profile using the
access logs received from the ECs. The CC tracks the list of active
pages across ECs and continuously evaluates each page to deter-
mine the object-group representation by learning the dynamicity
of the individual objects and the relationship between dynamically
changing objects across time-varying versions of a page. The object-
group at a given time represents a grouping of the current set of
active objects in a page along with their expected rate of change
across future versions of the same page.

3.1.1 Object-groups. Web pages are inherently complex to ana-
lyze, especially at the object, flow-level, and script-level dependen-
cies. Recent work [27, 41, 43] has attempted to understand these
dependencies at these fine-grained granularities with the goal of
enhancing end-to-end web performance using a combination of
prefetching and pre-rendering content in the cloud. In comparison
to these approaches, xCache takes a much simpler approach to
derive object-group representations. The dynamicity of an object
is determined by its rate of change across different versions of a
page. For example, two objects, X and Y, are closely related to each
other if they share the same dynamicity pattern across different
versions of a page. In essence, whenever X changes in a version, Y
also correspondingly changes and vice versa. An object is defined
to be highly dynamic if it varies across each version of the page and
is deemed not cacheable by the CC. A new object that is observed
for the first time in a given version of a page has an unknown
dynamicity. For simplicity, we define all new objects to be in the
highly dynamic object-group.

For a new page, the Page Profiler performs a bootstrapping
process to gather initial statistics of the page. When a new page
is profiled, the bootstrapping process requests the page several
times over a certain time interval (e.g., every 10 minutes, 15 times).
This information determines objects that belong to a page, the
web objects’ estimated change rate, and the variations across page
requests. Based on this information, the CC decides which part of
the page is constant, cacheable, and can be sent to the EC. After
the bootstrapping phase, the CC determines how many objects of
a page are cacheable and also decides on the pages are the most
useful to prefetch. The CC is at a well-resourced location with high
bandwidth and low delay connectivity. The ECs, on the other hand,

xCache: Rethinking Edge Caching for Developing Regions

are located in developing regions. Thus, the connection between
the CC and the ECs might have limited bandwidth. As a result, the
CC has to decide carefully which pages to prioritize and send to
the ECs.

3.1.2 Learning Object-groups. In order to prevent the CC from
continuously downloading full pages over short time periods to
determine the dynamicity of web objects, xCache automatically
learns the characteristics of object-groups with low training effort.
Based on observing the dynamicity of several pages, web content
can be broadly divided into three categories: objects that do not
change over multiple days (constant objects), objects that change
within hours (changing objects), and new objects.

In addition, we have observed that web objects in these cate-
gories have distinct features. These features can be used as input to
standard machine learning algorithms to dynamically predict the
cacheability of web objects (i.e. their category).

Feature Extraction per Object: Each web object’s dynamicity
can be linked to various specific features that are used with a Stan-
dard Support Vector Machine (SVM) model [32]. These features
are fed to the SVM in the form of individual feature vectors and
contain the following information:

1. Special Characters in URLs: From our collected dataset we ob-
served that objects with URLs that do not contain special characters
have a higher probability to belong to the group of constant objects.
On the other hand, objects with URLs that contain special char-
acters are of dynamic nature, i.e., they tend to change frequently
(sometimes even per request). This trend comes from the fact that
most of these web objects are requested for dynamic purposes like
jQuery requests, which are user specific and mostly used for web
analytics. Responses to these requests vary depending on several
factors, such as user-agent, access time, geo-location, etc. This
makes these resources difficult to cache.

2. Content Type: The content type is also directly related to
the web object dynamicity. We have observed that certain web
object types such as images fall more frequently within the constant
objects group. This is because whenever an image is changed, it
appears under a different URL. In contrast, text-based web objects
such as a HTML, CSS, or]S files are more likely to partially change.

3. Max-age header: The max-age is a measure of dynamicity of a
web object provided by the content provider. Although this is not
often an accurate measure, it is still helpful for the predictive model.

4. Time-since-last-changed header: The time since an object has
last changed is mainly introduced to track the web objects that
have cyclic changes or changes at some constant intervals.

Using these features, xCache trains an SVM with longitudinal
data of a collection of versions of a given page and uses the trained
SVM to make caching decisions.

3.2 Cache Manager

The CC Cache Manager uses three methods to maintain the content
of ECs: page-level cache signaling, prefetching of dynamic objects,
and distribution of objects.

Page-level Object Caching Signals: The base design of xCache
involves a simple signaling protocol where the CC uses the object-
group information for a given page determined by the Page Profiler

ICTD ’17, November 16-19, 2017, Lahore, Pakistan

to inform the caching decisions of each EC. Given that an EC has ob-
served a page request, the EC retains all objects of a page in its cache
for a limited period until the CC provides an updated object-group
information for this page to the corresponding EC. xCache can also
provide meaningful caching signals based on quickly training an
SVM across a few versions of the page over a short time-period and
then proactively updating the EC’s predictions. This process can
be applied to pages that are requested even for the first time.

Prefetcher: The CC determines the changes in the dependency
tree in terms of which part is cacheable/non-cacheable over time,
while updating the ECs using as little bandwidth as possible. The
Prefetcher’s role is to prioritize pages based on the following in-
formation: page popularity, page rate of change, and page transfer
cost. Ideally, the Prefetcher would download the pages at a high
frequency to perfectly track all the changes, or simply be notified
by the web publisher in a push-based model. Instead, xCache as-
sumes a pull-based model operating over fixed time epochs T. At
the beginning of every epoch, all known pages are ranked based
on their utility values (see Section 3.3). The Prefetcher downloads
these pages in a ranked order of their utility values and updates
their objects. After time T elapses, the Prefetcher recomputes the
utilities and ranks the pages again. However, the Prefetcher is best-
effort and pages of low rank will not be prefetched before T expires.
Also, pages that require certificates or use end-to-end encryption
are non-cachable and hence cannot be prefetched.

The Prefetcher cannot track all changes of each page since ob-
jects may change at a rate faster than the polling frequency. To
determine whether this is the case, the Page Profiler’s bootstrap-
ping phase provides the CC with an initial estimate of the rate
of change of an object. Using this estimated change rate, the CC
decides whether the object should be tracked. We use the time
epoch, T, as a threshold of the minimum rate of change that will
be tracked (considered for prefetching) by the CC.

Distributor: Every object-group of a page is associated with an
utility value that is computed by the Prefetcher as we elaborate
in the next section. For each page, the Distributor determines the
object-groups that should be transferred to each EC based on their
utility values. The Distributor further uses two simple optimizations
for reducing the bandwidth overhead for distribution. First, the
Distributor determines the best form for transmitting each object
to each EC. Certain objects (especially CSS, HTML, etc.) can be
updated using deltas. To perform delta updates, the CC and EC
maintain version numbers and delta updates encode the changes
across versions. In our evaluation, we show that delta updates
can reduce the bandwidth requirement for specific types of objects.
Other objects that cannot be delta updated are compressed and
transmitted to the EC.

3.3 xCache Utility Functions

The Prefetcher determines the rank of each page based on two
utility functions: time utility Ur and bandwidth utility Upyy. Both
utility functions are defined as the ratio of the time (or bandwidth)
of conventional caching over xCache prefetching, i.e., the savings in
time or bandwidth that xCache provides over conventional caching
solutions. When computing the rank of a page, the CC can deter-
mine the desirable trade-off between bandwidth and time savings

ICTD ’17, November 16-19, 2017, Lahore, Pakistan

by setting different weight-factors to these utilities. In our current
design, we gave equal weights to both utilities.

Given a time-period T, we divide the object-groups of a page x
into X and X3, where X is the set of tracked objects with a change
time > T, and X3 is the set of untracked objects with a change
time < T. Let Nyeq be the number of requests of a page within
the time period T reported by the EC. Let |x| denote the size of the
objects in bits. Other parameters in our utility calculation include:
RTT is the round trip time per object from the CC to the web server,
BW is the bandwidth between the EC and CC, g; is an indicator
variable of object i’s cache header expiration (e.g., if max-age is
exceeded, g; = 1), and p; is the probability that object i has changed
since the object was last updated. Given these parameters, the time
utility Ur is defined as follows:

Ur = B (1)

where « is the time cost of a page without xCache

||
a= Nreq . qi(RTTi +pi - —) (2)
2 B

and f is the time cost with xCache

Slx] x|
B = XEZXlP] “BW + Nreg 'XEZXZ qi (RTTI +pi- W) (3)
The bandwidth utility Ugyy is defined similarly as the ratio of the
bandwidth used to download a page with a legacy cache over the
bandwidth used to download a page with xCache. The bandwidth
utility Ugyy is defined as follows:

Usw = L (@)
o

where y is the bandwidth cost of a page without xCache

Y = Nreq - Z‘h"pi'l’d (5
xeX

and o is the bandwidth cost of a page with xCache

o=) pj-Slxl+ Nreg- D qi-pi-Ix] ©
x€X) x€Xy

The utility calculations are bound by a single parameter, time
period T, which dictates the dynamicity of pages that the CC is
willing to operate for a given page. Our current design chooses an
operational value of T = 30 min across popular pages. Based on
both utilities, the CC prioritizes the pages that are prefetched and

distributed to the ECs.

4 IMPLEMENTATION

Cloud Controller: The CC is implemented in Python in conjunc-
tion with the Selenium web-driver [14] and a web proxy. The Page
Profiler goes through each web page within the access logs. If the
page profile already exists, the Page Profiler updates the popularity
of the web page within the page profile; otherwise, it creates a new

Ali Raza et al.

profile using the bootstrapping phase to build the initial object-
group page statistics. These statistics are later used by the Page
Profiler to calculate the page utility and are stored on a per object
basis and include object content, content-hash, cache-header, and
the object change history.

In the bootstrapping phase, each page is regularly requested for
15 times every 10 minutes. The Prefetcher requests a page from
the origin (content server) and returns all of its associated objects.
These objects are then indexed and further processed. In order
to store and index all retrieved objects, the Prefetcher requests
go through a simple web proxy. The web proxy functionality is
extended to store a copy of the objects within a local database
before returning them to the Selenium web-driver.

Object changes are detected using a simple MD5 hash value
and the value is stored in the page profile of each page. For every
object change, the Distributor decides whether to update the corre-
sponding ECs based on the page profiling, utility prioritization, and
the bandwidth limitation, or not. The Distributor maintains long-
lived TCP connections directly with the ECs, thus saving costly
connection setup delays.

Edge Cache: The EC is implemented as a modified version of the
Apache Traffic Server (ATS) [18] with an extended set of function-
alities (corresponding to the EC module). This module implements
features to report access patterns to the CC and to receive objects
from the CC. The access patterns of the EC are obtained from the
ATS logs every 30 minutes. An ordered popularity list is also shared
with the CC, which contains all requested web pages as well as
their popularities (i.e., number of times each page was requested).
The ATS was configured to allow the EC module to add received
object updates from the CCs Distributor to the ATS cache.

5 EVALUATION

In this section, we evaluate xCache through a series of experiments
to verify its performance gains. Three evaluations were performed:

(1) A real-world deployment environment where we evalu-
ated xCache in terms of cache hit rate, object serve time,
bandwidth savings, and PLT.

(2) An evaluation on the impact of the object-group prediction
algorithm for object-level caching signals and stale content.

(3) A sketch of how xCache can be applied in conjunction with
Shandian.

Across all our evaluations, we use the term legacy cache to refer
to an optimized localized HTTP cache that relies on cache-control
and expires headers for its eviction policy for objects.

5.1 Real-world Deployment

We have tested the xCache performance under diverse network
conditions by deploying xCache on university campuses in the UAE,
Pakistan and Sri Lanka. In each deployment, we compare xCache
with a legacy cache to highlight the performance gains of xCache.
In these real-world experiments, xCache does not include the SVM
model, which we evaluate separately in Section 5.2.

In order to evaluate this experiment in a repeatable fashion, we
considered a simple setup where we used end-user client machines
to emulate user requests. In this setup, we configured two machines

xCache: Rethinking Edge Caching for Developing Regions

to act as clients to generate simultaneous requests with one client
configured to use the xCache cache and another client configured to
use a legacy cache as their local proxy. The bandwidth and network
conditions between the clients and their respective caches were set
to be identical. Both caches were connected to the Internet to fetch
objects that are not cached. Since both machines were operating
simultaneously and to avoid any interference from other network
level caches along the path, the cache-control: no-cache, max-age=0
headers are appended to each outgoing HTTP request on both
caches. Consequently, intermediate caches ignore the requests
and do not return any cached objects. The EC of xCache was
connected to a CC running in the UAE which had the fastest Internet
connectivity among the three locations. The legacy cache used a
default ATS implementation, whereas the EC used the modified
ATS implementation, as described in Section 4.

In order to automate the user requests, we used the Selenium
web-driver to emulate user-like behavior. In this configuration,
both clients request web pages from a predefined list that contains
the requested URLs and a relative timestamps when the each URL
was accessed. The list was derived from anonymized access logs
that we collected over 30 hours from a university campus with
more than 3,000 students in Pakistan. The access logs represent a
variety of web pages with a wide range of interests (sports, news,
entertainment, etc.).

Cache Hit Rate: Cache hit rate is a basic metric that is used to
evaluate the performance of caches. A higher cache hit rate gen-
erally translates directly into faster PLTs and reduced bandwidth
consumption. In general, a good cache will not only cache ob-
jects but it should also provide valid (not stale) objects and use
bandwidth and storage efficiently. Table 1 summarizes the caching
performance of xCache and the legacy cache. A cache hit indicates
that a cache finds the requested object and a cache miss means
that the requested object is either not present in the cache or has
already expired. Consequently, the cache will first go to the origin
(content server) or a cache along the way to retrieve this object.
Other includes all other requests that were received by the cache
and that were not HTTP GET requests, e.g. HTTP POST requests,
DNS requests, etc.

Region | Legacy cache | xCache
UAE 35.5% 56.9%
Cache hit | Sri Lanka 38.4% 54.3%
Pakistan 35.1% 52.9%
UAE 55.5% 33.7%
Cache miss | Sri Lanka 52.4% 34.9%
Pakistan 49.4% 31.9%
UAE 9.0% 9.4%
Other Sri Lanka 9.3% 10.8%
Pakistan 15.5% 15.2%

Table 1: Cache hit rate comparison

Table 1 shows that xCache consistently achieves a higher hit
rate by about 15% across all regions. The hit rate is better than
the legacy cache as we would expect because xCache proactively
updates the cache with the latest objects.

ICTD ’17, November 16-19, 2017, Lahore, Pakistan

Figure 6 depicts a breakdown of the previous experiment by their
six most frequent object types. We observe that xCache provides
the most improvement for text-based objects and GIFs.

25k , , .
20k I Legacy HEl xCache
2 15k
2 16k '
S 10k|
E'S
5k> ' l
0 .
png gif

app. app. txt txt
fjs /x-js /js /html
Object types

Figure 6: Cache hits breakdown across data types

Bandwidth Savings: Since one of the objectives of xCache is
to save bandwidth, the CC updates the ECs using delta updates.
HTML, JS, etc., can be easily delta updated because these objects
often change only by a few lines or characters. However, objects
like images and videos cannot be delta updated because they mostly
change completely.

Although HTTP 1.1 defines the option of delta updating, it is
often not implemented by web servers. Figure 7 shows the CDF
comparison between the objects’ diff size (represented by blue)
compared to the original object size (represented by red). The
comparison shows that with delta updates, about 90% of objects
become smaller than 5 kBytes (up from 70%) and thus bandwidth is
saved.

1.0 . -

Osf’- ,,,,,, et R
ho,ﬁ;-.’."v',v,v,.. ,,,,,,, o]
A
QO 04l SRR TR

0.2b — ith delta updates |

’ == Without delta updates
0.0 | | 1 1
0 20 40 60 80 100

Size (kBytes)

Figure 7: Web objects diff size comparison

Object Serve Time: When a client requests a page, the client
browser sends several HTTP requests for the individual objects.
Some of these requests are sent in parallel and others must sent
sequentially only after the browser receives certain objects. The
PLT depends on the individual object serve times that constitute a
page so improving this time will improve the overall PLT. Figure 8
shows the object serve times of the legacy cache and xCache for
our three locations. The object serve time in the figure represents
the time from the incoming request at the cache to the time the
last byte is sent to the client. We observe that with xCache, more

ICTD ’17, November 16-19, 2017, Lahore, Pakistan

than 50% of the objects are served almost instantly. In contrast, the
legacy caches have significantly higher object serve times due to
cache misses. Figure 9 shows a breakdown by object type for the
UAE results.

UAE/Legacy

= 0.6 —— UAE/xCache 1
- - - Sri Lanka/Legacy

O 0.4 —— Sri Lanka/xCache []
0.2 - - - Pakistan/Legacy
—— Pakistan/xCache

0 200 400 600 800 1000 1200 1400 1600
Object serve time (ms)

Figure 8: Objects serve time comparison

107 —— .
% 108 — Legacy
E 107}
g 101}

=

5 103}

Sl
EinElulilS

app app. txt txt
fjs /x-js /js /html
Object types

— xCacheﬂQ - S

}t s

Figure 9: Object’s serve time (UAE) — breakdown across types

Page Load Times: The PLT of a page depends on the individual
serve times of the collective assets of the page. Since xCache pro-
vides a higher cache hit rate and minimizes the HT TP object’s serve
time, the performance gain of xCache is reflected in the overall PLT.

Figure 10 shows the PLTs for our experiments. We find that
xCache improves the PLTs substantially in the UAE and Pakistan.
However, the PLTs are only slightly improved in Sri Lanka because
the PLTs and DNS resolution times in Sri Lanka are considerably
lower than from the UAE and Pakistan.

1.0

_____ il
0.8 UAE/Legacy
& 0.6 UAE/xCache
) Sri Lanka/Legacy
O 0.4 Sri Lanka/xCache |
0.2 Pakistan/Legacy
; ; Pakistan/xCache
0 O ¢ L L L L L
0 10 20 30 40 50 60

Page load time (s)

Figure 10: Page load time across all regions

Ali Raza et al.

5.2 Object-level Caching Signals

In this analysis, we evaluate the performance of the SVM prediction
model. We trained the SVM model with the first 20 versions of our
web pages dataset. The dataset consists of web pages from differ-
ent categories, i.e., news, entertainment, shopping etc. and were
manually selected from Alexa top web pages. Further, each web
page W is a collection of versions v1, vy, ..., Uy, Where consecutive
versions are 30 minutes apart and every version consists of objects
Vi = 01,02, ..., 0. To train the SVM model, the features (as listed in
Section 3.1.2) for each o; were extracted from the first 20 versions
of each page. This evaluation was configured to pick a random
web page from our dataset and use its access pattern to emulate
user requests on the EC. We then run the SVM trained model on
all objects within a specific web page version and calculate the hit
rate as a percentage of the total number of objects that belong to
that page. In addition, we also compute the percentage of stale
content that is served by the EC, i.e., when a wrong prediction has
been made. This is done by comparing the EC served objects to
the absolute truth of the web page. We observe that a SVM model
trained on 20 versions can predict the object-group it belongs to
with an accuracy of more than 85% and also maintains a staleness
of less than 5% across most pages. We report results for evaluating
our SVM model against 1000 versions of the web page that follow
the first 20 versions.

Dynamicity vs. Accuracy: xCache predicts the dynamicity of
web objects and based on these predictions, an EC will decide
whether to serve the objects from the cache or fetch fresh copies.
Figure 11 shows the percentage of stale content served by xCache as
a consequence of using the SVM prediction. Stale content is served
when a resource is cached and obsolete but the SVM predicts it to be
cached and unchanged. We observe that stale content accounts for
less than 5% of the served objects even for highly dynamic pages.

1.0

0.8}
= 0.6}
a
O 0.4f

0.2}

0.0 i i i i

0 2 4 6 8 10 12 14
% of stale content

—— yahoo apple ebay aliexpress
— qq amazon microsoft —— taobao

Figure 11: Stale content using SVM prediction

5.3 xCache with Shandian

Shandian [43] is a web optimization technique that pre-evaluates
web pages to enhance PLT performance. Shandian can greatly ben-
efit from xCache, because the main goal of xCache is to bring the
web content closer to the client to reduce latencies. Shandian pro-
vides clients a partially pre-built DOM structure by preprocessing

xCache: Rethinking Edge Caching for Developing Regions

JS and CSS objects in advance. Thus, if xCache can keep the JS and
CSS objects updated at the EC, Shandian would be able to prepro-
cess them without suffering from performance hits (fetching new
copies) when they change. Figure 12 shows the prediction error of
our SVM for JS and CSS objects across 30 versions of 30 popular
Alexa pages. We observe that xCache’s SVM engine predicts most
of the JS and CSS files in a page correctly.

1.0
0.8
= 0.6
A
© 0.4
0.2}
0.0 I I I I

0 20 40 60 80 100
SVM prediction error (%)

Figure 12: SVM prediction error of JS and CSS files for 30
versions of 30 popular Alexa pages

We contacted the Shandian authors and the source code was
unavailable, so we emulated the behavior of Shandian under the
following assumptions: (a) we analyzed the waterfall model of
the HAR file download patterns to infer potential dependencies of
a web page (these inferences may not be perfect); (b) we have a
sufficient number of TCP connections for parallel downloads while
maintaining the per server upper limit imposed by the browser. We
call this emulated system Shandian®, which we consider here as an
upper bound of Shandian performance.

1.0 T r e ———

0.8F - |
B 0.6} S : .]
Q "’
O 0.4} e ; ; ; |

0.2} P = Shandian* + xCache* | |

) e i == Shandian*
0.0% . - L 1 N
0 5 10 15 20 25 30

Page load time (s)

Figure 13: xCache enhancements to Shandian™

Using the HAR files of the 80 pages described in Section 2, we
consider how Shandian® performance can be improved by combin-
ing it with xCache*.! From our results in Figure 13, we observe
that the median page load time is reduced by 50% with the addition
of xCache* to Shandian®. Although we have made a number of
optimistic assumptions in our emulation for both Shandian* and
xCache”, our results suggest that the two techniques could comple-
ment each other to yield performance benefits.

!For these emulations we assumed that all pages are in the active list of the xCache CC
and all cacheable objects within the page are indeed cached by the EC (hence xCache*).

ICTD ’17, November 16-19, 2017, Lahore, Pakistan

6 RELATED WORK

A number of recent works have explored the network bottlenecks in
developing regions that cause poor web performance [2, 13, 23, 33,
47]. Chetty et al. [13] and our own previous work [47] showed how
high latencies to destination servers can introduce performance
bottlenecks in South Africa and Ghana. Koradia et al. [23] found
that high latency, bufferbloats, and packet losses are the central
causes of poor performance in India. Sen et al. [33] showed that
people using Free Basic Service in developing regions experience
low QoS, while Ahmad et al. [2] performed a detailed analysis of
mobile devices being used to access the Internet in Pakistan.

A few solutions have also been proposed to tackle these various
challenges. Wang et al. [45] studied the impact of a client-only
solution in improving the user experience and show that exces-
sive revalidation can affect the cache performance [44]. ASAP [49]
tries to lower the RTT by shortcutting DNS requests and elimi-
nating TCP’s three-way handshake. RuralCafe [12] attempted to
improve web search and browsing using a pair of coordinating
caches. Each of these projects tackle a specific aspect of the poor
web performance in developing regions, but unlike xCache, they
do not provide a general end-to-end system that can enhance the
performance of PLTs as a whole.

xCache is naturally related to a variety of mainstream research
on web analytics, caching, prefetching, and CDNs. While xCache
may share design choices with specific works, xCache is specifically
designed for developing region conditions where end-hosts experi-
ence high server latencies, have limited edge bandwidth and the CC
enhances end-to-end performance by pushing the right granularity
of content to the EC in a bandwidth efficient manner. Also, in con-
trast to other recent work on web optimization, xCache operates
on a page level through the use of aggregated object-groups.

Web Page Analytics, Prioritization and Middlebox Opti-
mizations: Wang et al. [41] showed that computation takes up
significant time while browsing and approaches like SPDY [26],
caching and mod pagespeed have limited effect on reducing PLTs.
Later Wang et al. [42] demonstrated the potential of micro-caching
content at a fine granularity. Flywheel [1] compresses data between
the user and server to save bandwidth by using an HTTP proxy
server. FlexiWeb [34] is a hybrid framework of both approaches
(normal browsing and middleboxes), which dynamically decides
whether to use middleboxes or normal browsing, depending on
the network conditions and data types. Although these systems
target modern web performance issues, they do not address the
main performance bottlenecks in developing regions.

Shandian [43] also attempts to reduce the PLT by downloading
and evaluating a web page at the middlebox. There are number
of works that focus on prioritizing the critical path resources in
order to decrease the user perceived PLT [8, 9]. Polaris [27] uses a
dynamic client-side scheduler that runs on unmodified browsers;
using a fully automatic compiler, Polaris enables servers to translate
normal pages into ones that load themselves. Unlike the reactive
approach of Shandian and Polaris, xCache can proactively prefetch
and analyze web pages before they are requested by users.

Caching in Developing Regions: RuralCafe [12] focuses on
providing offline Internet for clients in regions with intermittent
network conditions. Unlike xCache, RuralCafe does not target to

ICTD ’17, November 16-19, 2017, Lahore, Pakistan

have the most up-to-date version of web pages, but rather focuses
on providing the availability of web pages, thus sacrificing liveness.
Interactive Caching [10] is a similar approach where content is
grouped together under a certain topic. HashCache [5] introduced
techniques for scaling up caching for cheap commodity laptops
with limited memory. Collaborative caching techniques have also
been tested in developing contexts [31] with limited success. Smart
Caching [48] is an in-browser cache which caches stable style data
and layout data for DOM elements, but this approach only benefits
individual users.

Prefetching: Many studies have shown how cloud-based pre-
fetching and client prefetching solutions can produce performance
benefits [15, 24, 25, 28]. In the Mowgli system [25], a user marks
the pages of interest while browsing and the system starts prefetch-
ing them in the background. Some previous works [16, 37, 46]
used historical access patterns and popularity metrics to decide
which content should be prefetched, including optimizations such
as DNS prefetching and caching the TCP connection based on the
previous access patterns. HTML5 [40] allows developers to spec-
ify prefetching of certain important resources. Stark et al. [36]
proposed prefetching and validation of SSL certificates in order to
minimize the TLS handshake time. xCache also uses prefetching,
however its prefetching strategy differs from these works in that it
optimizes for the prioritization of content that should be sent to the
ECs. Additionally, xCache is not user-based, but rather for multiple
ECs that serve groups of users.

Content Distribution Networks (CDNs): CoBlitz [29] effi-
ciently distributes large files using a CDN designed for HTTP with-
out requiring any modifications to standard web servers and clients.
Lsync [22] is a latency-sensitive file transfer system used for syn-
chronizing WANs. CoDNS [30] is a lightweight cooperative DNS
lookup service that can be used to augment existing nameservers.
CoralCDN [19] is a decentralized and self-organizing peer-to-peer
web-content distribution network that redistributes and replicates
data that people find useful. Aperjis et al. [3] propose a price-
assisted content exchange system that leverages a mechanism for
exchanging currency for desired content with a single and decen-
tralized price per peer. Ariyasinghe et al. [4] combined prefetching
and caching in CDNs to reduce user perceived latency. xCache
aims to provide a flexible and deployable architecture that brings
the functionality of caches closer to that of CDNs.

7 CONCLUSIONS

This paper describes the design, implementation and deployment
of xCache, a cloud-managed Internet caching architecture for de-
veloping regions. xCache addresses two specific challenges that
make the Internet caching problem different in developing regions:
(a) the absence of cloud infrastructure in close proximity to end-
hosts thereby causing high end-to-end latency; (b) the presence
of limited per user edge bandwidth and high network contention
at the edge. xCache addresses these challenges by aggregating
access patterns in the cloud across Edge Caches and proposing a
cloud-managed caching model where a Cloud Controller maintains
liveness of popular objects of web pages. A key building block of
the xCache design is to estimate the utility of xCache over legacy
caching solutions and to apply the xCache cloud-managed caching

Ali Raza et al.

model only to objects which have high utility. Using a detailed
evaluation across three different developing regions, we show that
xCache can significantly improve web performance over legacy
caching.

ACKNOWLEDGMENTS

We thank the NYU Abu Dhabi Research Institute, the Center for
Technology and Economic Development (CTED) in NYU Abu Dhabi,
and the Cisco Research Grant for supporting Lakshminarayanan
Subramanian on this project. We thank Muhammad Sagqib Ilyas
for his help in Pakistan and Thushara Weerawardane and the
Kotelawala Defence University (KDU) for their help in Sri Lanka.
We would also like to thank the anonymous referees for their valu-
able comments and helpful suggestions.

REFERENCES

[1] Victor Agababov, Michael Buettner, Victor Chudnovsky, Mark Cogan, Ben Green-
stein, Shane McDaniel, Michael Piatek, Colin Scott, Matt Welsh, and Bolian Yin.
2015. Flywheel: Google’s Data Compression Proxy for the Mobile Web. In

Proceedings of the 12th USENIX Conference on Networked Systems Design and

Implementation (NSDI ’15). Berkeley, CA, USA.

Sohaib Ahmad, Abdul Lateef Haamid, Zafar Ayyub Qazi, Zhenyu Zhou,

Theophilus Benson, and Thsan Ayyub Qazi. 2016. A View from the Other Side:

Understanding Mobile Phone Characteristics in the Developing World. In Pro-

ceedings of the 2016 ACM on Internet Measurement Conference (IMC ’16). ACM,

New York, NY, USA.

Christina Aperjis, Michael J. Freedman, and Ramesh Johari. 2008. Peer-assisted

Content Distribution With Prices. In Proceedings of the 2008 ACM Conference

on Emerging Network Experiment and Technology, CONEXT 2008, Madrid, Spain,

December 9-12, 2008.

[4] L.R. Ariyasinghe, C. Wickramasinghe, P. M. A. B. Samarakoon, U. B. P. Perera,
R. A. P. Buddhika, and M. N. Wijesundara. 2013. Distributed Local Area Content
Delivery Approach with Heuristic Based Web Prefetching. In 8th International
Conference on Computer Science Education (ICCSE ’13).

[5] Anirudh Badam, KyoungSoo Park, Vivek S. Pai, and Larry L. Peterson. 2009.
HashCache: Cache Storage for the Next Billion. In Proceedings of the 6th USENIX
Symposium on Networked Systems Design and Implementation (NSDI ’09). Berkeley,
CA, USA.

[6] M. Belshe, R. Peon, and M. Thomson. 2015. Hypertext Transfer Protocol Version
2 (HTTP/2). RFC 7540 (Proposed Standard). (May 2015). http://www.ietf.org/rfc/
rfc7540.txt

[7] Michael Butkiewicz, Harsha V. Madhyastha, and Vyas Sekar. 2011. Understanding
Website Complexity: Measurements, Metrics, and Implications. In Proceedings of
the 2011 ACM SIGCOMM Conference on Internet Measurement Conference (IMC
’11). ACM, New York, NY, USA.

[8] Michael Butkiewicz, Daimeng Wang, Zhe Wu, Harsha V. Madhyastha, and Vyas
Sekar. 2015. Klotski: Reprioritizing Web Content to Improve User Experience on
Mobile Devices. In 12th USENIX Symposium on Networked Systems Design and
Implementation (NSDI ’15). Oakland, CA.

[9] Tae-Young Chang, Zhenyun Zhuang, A. Velayutham, and R. Sivakumar. 2007.
Client-side Web Acceleration for Low-bandwidth Hosts. In Fourth International
Conference on Broadband Communications, Networks and Systems (BROADNETS
07).

[10] Jay Chen and Lakshmi Subramanian. 2013. Interactive Web Caching for Slow or
Intermittent Networks. In Proceedings of the 4th Annual Symposium on Computing
for Development (ACM DEV ’13). ACM, New York, NY, USA, Article 5.

[11] Jay Chen, Lakshmi Subramanian, Janardhan Iyengar, and Bryan Ford. 2014. TAQ:
Enhancing Fairness and Performance Predictability in Small Packet Regimes. In
Proceedings of the Ninth European Conference on Computer Systems (EuroSys ’14).
ACM, New York, NY, USA.

[12] Jay Chen, Lakshminarayanan Subramanian, and Jinyang Li. 2009. RuralCafe:

Web Search in the Rural Developing World. In Proceedings of the 18th International

Conference on World Wide Web (WWW ’09). ACM, New York, NY, USA.

Marshini Chetty, Srikanth Sundaresan, Sachit Muckaden, Nick Feamster, and

Enrico Calandro. 2013. Measuring Broadband Performance in South Africa. In

Proceedings of the 4th Annual Symposium on Computing for Development (ACM

DEV ’13). ACM, New York, NY, USA.

Selenium Contributors. 2017. SeleniumHQ Browser Automation, Version 3.5.2.

http://www.seleniumhgq.org/. (2017). Accessed: 2017-09-09.

[15] Dan Duchamp et al. 1999. Prefetching Hyperlinks.. In USENIX Symposium on
Internet Technologies and Systems. 12-23.

[2

B3

=
&

[14

http://www.ietf.org/rfc/rfc7540.txt
http://www.ietf.org/rfc/rfc7540.txt
http://www.seleniumhq.org/

xCache: Rethinking Edge Caching for Developing Regions

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

Li Fan, Pei Cao, Wei Lin, and Quinn Jacobson. 1999. Web Prefetching Between
Low-bandwidth Clients and Proxies: Potential and Performance. In Proceedings
of the 1999 ACM SIGMETRICS International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS *99). ACM, New York, NY, USA.

R. Fielding, M. Nottingham, and J. Reschke. 2014. Hypertext Transfer Protocol
(HTTP/1.1): Caching. RFC 7234. RFC Editor. http://www.rfc-editor.org/rfc/
rfc7234.txt http://www.rfc-editor.org/rfc/rfc7234.txt.

The Apache Software Foundation. 2017. Traffic server. http://trafficserver.apache.
org/. (May 2017). Accessed: 2017-05-06.

Michael J. Freedman, Eric Freudenthal, and David Mazires. 2004. Democratizing
Content Publication with Coral. In Proceedings of the 1st USENIX Symposium on
Networked Systems Design and Implementation (NSDI ’04). San Francisco, CA,
USA.

ITU. 2013. Mobile users in developing regions:. https://www.itu.int/en/ITU-D/
Statistics/Documents/facts/ICTFactsFigures2013-e.pdf. (January 2013). Accessed:
2017-05-09.

David Lloyd Johnson. 2013. Re-architecting Internet Access and Wireless Net-
works for Rural Developing Regions. Ph.D. Dissertation. Santa Barbara, CA, USA.
Advisor(s) Belding, Elizabeth M. AAI3559800.

Wonho Kim, KyoungSoo Park, and Vivek S. Pai. 2012. Server-assisted Latency
Management for Wide-area Distributed Systems. In Proceedings of the 2012
USENIX Conference on Annual Technical Conference (USENIX ATC ’12). Berkeley,
CA, USA.

Zahir Koradia, Goutham Mannava, Aravindh Raman, Gaurav Aggarwal, Vinay
Ribeiro, Aaditeshwar Seth, Sebastian Ardon, Anirban Mahanti, and Sipat
Triukose. 2013. First Impressions on the State of Cellular Data Connectivity in
India. In Proceedings of the 4th Annual Symposium on Computing for Development
(ACM DEV ’13). ACM, New York, NY, USA.

Zhenhua Li, Christo Wilson, Tianyin Xu, Yao Liu, Zhen Lu, and Yinlong Wang.
2015. Offline Downloading in China: A Comparative Study. In Proceedings of the
2015 ACM Conference on Internet Measurement Conference (IMC ’15). ACM, New
York, NY, USA.

M. Liljeberg, H. Helin, M. Kojo, and K. Raatikainen. 1996. Mowgli WWW
Software: Improved Usability of WWW in Mobile WAN Environments. In Global
Telecommunications Conference (GLOBECOM °96). London, UK.

Roberto Peon Mike Belshe. 2016. SPDY Protocol - Draft 3.2. https://www.
chromium.org/spdy/spdy-protocol/spdy-protocol-draft3-2. (2016). Accessed:
2017-02-04.

Ravi Netravali, James Mickens, and Hari Balakrishnan. 2016. Polaris: Faster Page
Loads Using Fine-grained Dependency Tracking. In 13th USENIX Symposium on
Networked Systems Design and Implementation (NSDI ’16). Santa Clara, CA, USA.
Venkata N Padmanabhan and Jeffrey C Mogul. 1996. Using Predictive Prefetching
to Improve World Wide Web Latency. ACM SIGCOMM Computer Communication
Review 26, 3 (July 1996).

KyoungSoo Park and Vivek S. Pai. 2006. Scale and Performance in the CoBlitz
Large-file Distribution Service. In Proceedings of the 3rd Conference on Networked
Systems Design & Implementation (NSDI "06). Berkeley, CA, USA.

KyoungSoo Park, Vivek S. Pai, Larry Peterson, and Zhe Wang. 2004. CoDNS:
Improving DNS Performance and Reliability via Cooperative Lookups. In Pro-
ceedings of the 6th Conference on Symposium on Opearting Systems Design &
Implementation (OSDI "04). Berkeley, CA, USA.

Charles E. Perkins, Elizabeth M. Belding, and Ravi Jain (Eds.). 2008. Proceedings of
the 2008 ACM Workshop on Wireless Networks and Systems for Developing Regions,
San Francisco, California, USA, September 19, 2007. ACM.

Scikit-learn. 2016. Scikit-learn: Support Vector Machines. http://scikit-learn.org/
stable/modules/svm.html. (May 2016). Accessed: 2017-02-05.

Rijurekha Sen, Hasnain Ali Pirzada, Amreesh Phokeer, Zaid Ahmed Farooq,
Satadal Sengupta, David Choffnes, and Krishna P. Gummadi. 2016. On the Free
Bridge Across the Digital Divide: Assessing the Quality of Facebook’s Free Basics
Service. In Proceedings of the 2016 ACM on Internet Measurement Conference (IMC

[35

[36

[37

(38]

[39]

[42

[43

[44]

[45]

[46

[47

=
&

[49]

ICTD ’17, November 16-19, 2017, Lahore, Pakistan

’16). ACM, New York, NY, USA.

Shailendra Singh, Harsha V. Madhyastha, Srikanth V. Krishnamurthy, and
Ramesh Govindan. 2015. FlexiWeb: Network-Aware Compaction for Accel-
erating Mobile Web Transfers. In Proceedings of the 21st Annual International
Conference on Mobile Computing and Networking (MobiCom ’15). ACM, New York,
NY, USA.

Internet Society. 2014. Global Internet Report 2014. https://www.internetsociety.
org/sites/default/files/Global Internet_Report_2014.pdf. (April 2014). Accessed:
2017-05-09.

Emily Stark, Lin-Shung Huang, Dinesh Israni, Collin Jackson, and Dan Boneh.
2012. The Case for Prefetching and Prevalidating TLS Server Certificates. In 19th
Annual Network and Distributed System Security Symposium, NDSS. San Diego,
California, USA.

Srikanth Sundaresan, Nazanin Magharei, Nick Feamster, and Renata Teixeira.
2012. Accelerating Last-mile Web Performance with Popularity-based Prefetch-
ing. In Proceedings of the ACM SIGCOMM 2012 Conference on Applications, Tech-
nologies, Architectures, and Protocols for Computer Communication (SIGCOMM
’12). ACM, New York, NY, USA.

UNCTAD. 2013. Lack of infrastructure in developing regions:. http://unctad.org/
en/PublicationsLibrary/ier2013_en.pdf. (December 2013). Accessed: 2016-05-09.
Arun Venkataramani, Praveen Yalagandula, Ravi Kokku, Sadia Sharif, and
Michael Dahlin. 2002. The Potential Costs and Benefits of Long-term Prefetching
for Content Distribution. Computer Communications 25, 4 (2002), 367-375.
W3C. 2016. HTML5 prefetching. https://www.w3.0rg/TR/2014/
REC-html5-20141028/links.html#link-type-prefetch. (May 2016). Accessed:
2016-05-09.

Xiao Sophia Wang, Aruna Balasubramanian, Arvind Krishnamurthy, and David
Wetherall. 2013. Demystifying Page Load Performance with WProf. In Proceedings
of the 10th USENIX Conference on Networked Systems Design and Implementation
(NSDI ’13). Berkeley, CA, USA.

Xiao Sophia Wang, Arvind Krishnamurthy, and David Wetherall. 2014. How
Much Can We Micro-Cache Web Pages?. In Proceedings of the 2014 Conference on
Internet Measurement Conference (IMC ’14). ACM, New York, NY, USA.

Xiao Sophia Wang, Arvind Krishnamurthy, and David Wetherall. 2016. Speeding
up Web Page Loads with Shandian. In 13th USENIX Symposium on Networked
Systems Design and Implementation, NSDI 2016, Santa Clara, CA, USA, March
16-18, 2016. 109-122.

Zhen Wang, Felix Xiaozhu Lin, Lin Zhong, and Mansoor Chishtie. 2011. Why
Are Web Browsers Slow on Smartphones?. In Proceedings of the 12th Workshop
on Mobile Computing Systems and Applications (HotMobile '11). ACM, New York,
NY, USA.

Zhen Wang, Felix Xiaozhu Lin, Lin Zhong, and Mansoor Chishtie. 2012. How
Far Can Client-only Solutions Go for Mobile Browser Speed?. In Proceedings of
the 21st International Conference on World Wide Web (WWW ’12). ACM, New
York, NY, USA.

Qiang Yang, Haining Henry Zhang, and Tianyi Li. 2001. Mining Web Logs
for Prediction Models in WWW Caching and Prefetching. In Proceedings of the
Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD ’01). ACM, New York, NY, USA.

Yasir Zaki, Jay Chen, Thomas Potsch, Talal Ahmad, and Lakshminarayanan
Subramanian. 2014. Dissecting Web Latency in Ghana. In Proceedings of the ACM
Internet Measurement Conference (IMC ’14). Vancouver, BC, Canada.

Kaimin Zhang, Lu Wang, Aimin Pan, and Bin Benjamin Zhu. 2010. Smart Caching
for Web Browsers. In Proceedings of the 19th International Conference on World
Wide Web (WWW °10). ACM, New York, NY, USA.

Wenxuan Zhou, Qingxi Li, Matthew Caesar, and P. Brighten Godfrey. 2011.
ASAP: A Low-latency Transport Layer. In Proceedings of the Seventh COnference
on Emerging Networking EXperiments and Technologies (CONEXT ’11). ACM, New
York, NY, USA.

http://www.rfc-editor.org/rfc/rfc7234.txt
http://www.rfc-editor.org/rfc/rfc7234.txt
http://www.rfc-editor.org/rfc/rfc7234.txt
http://trafficserver.apache.org/
http://trafficserver.apache.org/
https://www.itu.int/en/ITU-D/Statistics/Documents/facts/ICTFactsFigures2013-e.pdf
https://www.itu.int/en/ITU-D/Statistics/Documents/facts/ICTFactsFigures2013-e.pdf
https://www.chromium.org/spdy/spdy-protocol/spdy-protocol-draft3-2
https://www.chromium.org/spdy/spdy-protocol/spdy-protocol-draft3-2
http://scikit-learn.org/stable/modules/svm.html
http://scikit-learn.org/stable/modules/svm.html
https://www.internetsociety.org/sites/default/files/Global_Internet_Report_2014.pdf
https://www.internetsociety.org/sites/default/files/Global_Internet_Report_2014.pdf
http://unctad.org/en/PublicationsLibrary/ier2013_en.pdf
http://unctad.org/en/PublicationsLibrary/ier2013_en.pdf
https://www.w3.org/TR/2014/REC-html5-20141028/links.html#link-type-prefetch
https://www.w3.org/TR/2014/REC-html5-20141028/links.html#link-type-prefetch

	Abstract
	1 Introduction
	2 The Status of the Web
	2.1 Object Download Times
	2.2 Page Load Times
	2.3 Web Page Dynamicity
	2.4 Effect of HTTP Headers

	3 xCache architecture
	3.1 Page Profiler
	3.2 Cache Manager
	3.3 xCache Utility Functions

	4 Implementation
	5 Evaluation
	5.1 Real-world Deployment
	5.2 Object-level Caching Signals
	5.3 xCache with Shandian

	6 Related Work
	7 Conclusions
	Acknowledgments
	References

