Extreme Web Caching for Faster Web Browsing

Ali Raza, Yasir Zaki
NYU Abu Dhabi, UAE
{ali.raza,
yasir.zaki}@nyu.edu

ABSTRACT

Modern web pages are very complex; each web page
consists of hundreds of objects that are linked from var-
ious servers all over the world. While mechanisms such
as caching reduce the overall number of end-to-end re-
quests saving bandwidth and loading time, there is still
a large portion of content that is re-fetched — despite
not having changed. In this demo, we present Fxtreme
Cache, a web caching architecture that enhances the
web browsing experience through a smart pre-fetching
engine. Our extreme cache tries to predict the rate of
change of web page objects to bring cacheable content
closer to the user.

CCS Concepts

eNetworks — Network architectures;

1. INTRODUCTION

There have been a number of recent projects that
explore how caching can effect the performance of web
browsing. Xia et. al.[2] found that layout and source
code of web pages that block subsequent objects to load
are highly cacheable. The authors have also shown that
a large amount of content (especially HTML) does not
change significantly over the course of days or months.

Motivated by their findings, we analyzed Alexa’s top
20 web pages over the course of three months to see
how web pages change over time. We periodically (ev-
ery 10 minutes) downloaded pages and observed that a
large portion of the page objects does not change fre-
quently over time (such as CSS, Javascripts, Images,
HTML, and etc.). Moreover, even when a certain ob-
ject changes, we observe that for text-based objects the
changes are relatively small. In many cases, the changes

Permission to make digital or hard copies of part or all of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for third-party components of
this work must be honored. For all other uses, contact the owner/author(s).

SIGCOMM ’15 August 17-21, 2015, London, United Kingdom
© 2015 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-3542-3/15/08.

DO http://dx.doi.org/10.1145/2785956.2790032

Thomas Pdétsch
University of Bremen,
Germany
tpoetsch@uni-bremen.de {jchen,lakshmi}@cs.nyu.edu

111

Jay Chen,
Lakshmi Subramanian
NYU and CTED, NYUAD

are only limited to a few lines of code within the en-
tire object. We also observed that these minor changes
are mostly related to advertising or randomly generated
(tracking) IDs and are probably not of major impor-
tance to the user.

Most existing caching solutions rely on HTTP max-
age headers option [1] to identify the freshness of a
cached object. To confirm whether the max-age op-
tion is actually set correctly by the content provider
and if it reflects the correct number (i.e. timestamp) on
when an object would change, we compared the max-
age option of every object and of every version of our
recorded set of Alexa’s top 20 web pages. Since there
were 10 min between consecutive page requests, we can
tell whether an object has changed or not by comparing
the MD5 hash of the objects in both versions. We find
that the max-age option does not reflect the reality of
when objects change. This causes either a large number
of unnecessary requests or stale objects in the cache.

In order to cope with the findings mentioned above,
we developed a novel caching architecture called Fa-
treme Cache that aims to (a) estimate the correct rate
of change for every object within a web page and then
overwrites the max-age option which was set by the con-
tent provider and (b) bring web content closer to the
user. Hence, unnecessary web requests can be avoided
and content can be served from a closer edge cache.

2. KEY FINDINGS

We looked into how objects change over time within
several popular web sites and have discovered that a
large number of objects did not change over time. In
addition, even though some objects might have changed
over time, the ratio of the change to the overall object
size is very small and does not require to fetch the en-
tire object again. Moreover, caching policies are not
dictated properly by the content owners. The key ob-
servations that we have made in our analysis can be
summarized as follows:

e Web publishers do not configure the cache-control
headers in HTTP correctly/carefully. For the top
20 web pages from Alexa, we found that a large
number of objects violate this, i.e. changing either
before or after the specified max-age.



e Changes in Javascript, HTML, and CSS objects
are not significant and it is not required to fetch
the whole object again. Sending only diffs can
tremendously speed up page load times.

Figure 1 shows the correlation between the max-age
and the change rate of all objects for the recorded top 20
Alexa web sites. The x-axis represents the actual max-
age set by the content provider that is communicated
through the HTTP headers; the y-axis represents the
actual time the object took to change. If the max-age
value is a true mean of the object’s change rate, then
the data should be highly correlated along a 45 degree
line. The figure shows that the max-age generally does
not correlate with the object’s actual rate of change.

For the same dataset, Figure 2 shows the percent-
age of objects that stays the same after a certain time
has elapsed in comparison to the first version of the
website. The idea is to show how similar a certain web
page stays after a certain time. The x-axis indicates the
times at which the similarity is computed and the y-axis
represents the similarity index calculated as number of
similar objects/total number of objects. It can be seen
that for a long period of time, around five hours, the
similarity index is above 65%. For certain web pages,
the similarity index remains above 90% even after a day.

104 - ———————— mera e 4 s -
o -

’g 103
o
£
& .
g)a 102 -
=]
®
=
o

10!

109 - -

10° 10! 10% 10% 10*

Cache Time (m)
Figure 1: Per object max-age vs. change rate

== cnn.com

1.0 amazon.com
— —_— Dl t.
-\l\ logspot.com
o tv.com
0.8
‘% w3.org
E—
o S— = wikipedia.org
E 0.6 \\ yahoo.com
< youtube.com
= = wordpress.com
g 0.4 apple.com
@A X
= bbc.com
= flickr.com
0.2 .
= microsoft.com
= pinterest.com
0.0 = tumblr.com

10m 20m 30m 1h 2h 5h 12h 1d
Time between versions

Figure 2: Page similarity over time

tvguide.com

3. ARCHITECTURE

Our extreme cache architecture aims at enhancing the
hit rate of legacy caching systems and to reduce unnec-
essary content requests. Our solution is easy to deploy
since it neither requires any additional changes to the
network nor to the client browsers and web servers.

The extreme cache architecture is implemented at dif-
ferent locations in the network and consists of the fol-
lowing two components: a cloud controller and an edge
cache. Figure 3 shows the basic framework of the ex-
treme cache. As can be seen in the figure, the edge
cache is close to the client and has a backhaul connec-
tion to the Internet so as to accommodate cache misses
or non-cacheable content. The cloud controller is con-
nected to both, the Internet (for pre-fetching) and to
the edge cache so as to populate, prioritize, and update
its cache. The edge cache contains the most recent ver-
sion of each object even before it is requested by a user.
The cloud controller is responsible for pre-fetching the
web pages, estimating the objects rate of change, and
populating/updating the edge cache.

Cloud
:l Controller

()
N
55—
Client Edge Cache

Figure 3: Extreme cache architecture

3.1 Cloud Controller

The functionality of the cloud controller is to periodi-
cally request objects of web pages from the Internet and
then comparing the objects with the previous (cached)
version. This enables the cloud controller to estimate
the rate at which the objects change and will help to
decide when and how frequently it needs to update the
edge cache. If possible, the updates are done in terms of
delta updates (i.e. only sending the changes (diffs) in-
stead of the whole object) in order to save bandwidth.
Further, it overrides the max-age option with the pre-
dicted change rate (one option for the estimated max-
age of an object is to use to use the moving average of
the object’s change rate). The cloud controller can con-
trol several edge caches and prioritizes objects based on
their expected benefits to the cache hit rate.

3.2 [Edge Cache

The edge cache is a regular caching proxy that does
not have any additional intelligence. It is responsible
for serving the client requests with content stored in its
cache. In case of a cache hit, it delivers the cached ob-
jects; otherwise it requests the content from the origin.
The edge cache also records its client’s access patterns
and updates the cloud controller to help it prioritize and
decide on what to pre-fetch.

4. REFERENCES

[1] R. Fielding, M. Nottingham, and J. Reschke.
Hypertext transfer protocol (http/1.1): Caching,
June 2014. RFC7234.

[2] X. S. Wang, A. Krishnamurthy, and D. Wetherall.
How much can we micro-cache web pages? In
Proceedings of the 2014 Conference on Internet
Measurement Conference, IMC ’14, pages 249-256,
New York, NY, USA, 2014. ACM.





