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Thousands of lives are lost every year in developing countries for failing to detect epidemics early because of the
lack of real-time disease surveillance data.We present results from a large-scale deployment of a telephone triage
service as a basis for dengue forecasting in Pakistan. Our system uses statistical analysis of dengue-related phone
calls to accurately forecast suspected dengue cases 2 to 3 weeks ahead of time at a subcity level (correlation of up
to 0.93). Our system has been operational at scale in Pakistan for the past 3 years and has received more than
300,000 phone calls. The predictions from our system are widely disseminated to public health officials and form
a critical part of active government strategies for dengue containment. Our work is the first to demonstrate, with
significant empirical evidence, that an accurate, location-specific disease forecasting system can be built using
analysis of call volume data from a public health hotline.
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INTRODUCTION

The province of Punjab in Pakistan, with a population of close to
100million (1), was affected by a dengue epidemic in 2011.More than
21,000 dengue patients were reported, most of them from the city of
Lahore (2). There was no mechanism to detect the epidemic early or
localize the outbreaks, resulting in the loss of more than 350 lives.

Because there isnoknowncureor vaccine for treatingdifferent stagesof
dengue fever (3, 4), most public health efforts focus on prevention
through a combination of active disease surveillance and vector control
methods (5, 6). These methods target source reduction to eliminate the
breeding grounds of the vector through environmental waste manage-
ment, water management, and biological and chemical measures. The
World Health Organization advocates the use of early warning systems
to signal outbreaks ahead of time to contain diseases such as dengue.

To develop an early warning system, real-time surveillance data are
required. In developing countries, such as Pakistan, conventional health
data gathering methods are error-prone and take weeks to compile. This
leads to a delay in containment response against a disease, resulting in a
pandemic or seasonal outbreak. In particular, accurate forecasting of the
number of future patients and their location gives government agencies
adequate time tomobilize and target resources for containment and spread
awareness (7, 8). These early containment efforts curb the spread of dis-
ease at an early stage, restricting it from turning into a citywide outbreak
and affecting a large population.

Epidemiological data and geographical information system data
have previously been used for fine-grained disease surveillance (9);
however, the data-intensive nature of these systems requires the avail-
ability of a large workforce for data collection, often not available in the
developingworld. Besides the cost of these systems, collection of disease
data requires significant training and regulatory interventions to ensure
that all health facilities, in both public and private sectors, report accu-
rate disease data in real time.
Therefore, in resource-constrained developing countries, it may
only be possible to estimate the spread of disease using indirect methods.
Previous works have explored the use of telephone triage services (10),
Internet search queries (11–13), online media reports (14), and envi-
ronmental parameters (15) as indirect data sources to build epidemic
warning systems. However, systems based on environmental parameters
andonlinemedia reports provideonly coarse-grained surveillance because
of the nature of the data sources, whereas Internet search query–based
systems only perform well in countries with high Internet penetration.
Data from telephone triage services (10) and health hotline facilities (16)
have been shown to have a correlation with influenza activity; NHSDirect
(17) uses calls to a health hotline to generate alerts to complement other
surveillance methods. However, previous studies have reported that
telephone triage services are not a reliable source of surveillance data on
a national scale because of variability in coverage and a lack of statistical
prediction models from these data (10).

Here, we present results of how we used a simple phone-based
helpline facility (telephone triage service) to develop an early epidemic
warning system for dengue in Pakistan. Contrary to previous experience,
our system provides an accurate measure of future disease cases at a fine-
grained subcity level. Our system not only flags an outbreak (17) but
also makes an accurate forecast (median correlation of 0.85) of both
the number of patients and their locations 2 to 3 weeks ahead of time.
The ability of our system to accurately forecast patients and their loca-
tions is critical for the government to mobilize and target its resources
to contain an outbreak. Our prediction model carefully incorporates
both weather indicators and awareness level in a community to reduce
the false alerts common in previous crowd-sourced systems (18).

We report on our experiences running the system since the start
of 2012 in Lahore, Pakistan (see Materials andMethods). With more
than 300,000 hotline calls, we provide block-level forecasts of dengue
cases to health organizations throughout the city and constantly validate
our inferences from case data gathered from hospitals in the city. The
appeal of our model is its usefulness despite its sheer simplicity; to our
best knowledge, our system is the first to demonstrate, with significant
empirical evidence, that an accurate, fine-grained, and locality-specific
disease forecasting system can be built using analysis of call volume data
from a public health hotline (or a telephone triage service) (19, 20).
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RESULTS

Figure 1 shows the baseline data used in our analysis. Figure 1Ahighlights
the high correlation between the number of dengue patients reported in
hospitals and the rawnumber of “dengue symptom inquiry” calls received
at the health hotline in Lahore for the years 2012–2013. In the data shown
in Fig. 1A, the number of calls “lead” the number of patients. Although the
number of calls aggregated at the city level has a strong correlationwith the
number of cases during the year 2012 as shown in fig. S1, we observe that
their relative variations across time and across different towns were not
uniform. Hence, calls cannot be used alone to predict the number of cases
and additional parameters, such as awareness level and climate conditions
needed to be incorporated in the model. Figure S1 shows the cross-
correlation values between suspected cases reported from hospitals and
the number of calls received at the health hotline for the city of Lahore
during 2012. Figure 1 (B and C) shows that 7 of 10 towns in Lahore
follow a similar pattern: the relative amount of calls received from a
town exhibits similar variations to the relative number of patients re-
ported from the same town.

Althoughour baseline analysis shows a correlationbetween call volume
data and disease cases, the calling patterns of citizens are naturally
dependent on the level of awareness about the telephone triage service.
This is visible inFig. 1A.During the first peakof cases in2013, the awareness
campaign activities are low, resulting in a lower number of calls being
received at the healthhotline. In contrast, during the secondpeakof cases
in 2013, the awareness campaign activities are high, resulting in a higher
Abdur Rehman et al. Sci. Adv. 2016; 2 : e1501215 8 July 2016
number of hotline calls. Previous studies that used data from alternative
data sources did not incorporate this aspect; however, for public hotline
services, it must be explicitly incorporated to address the inaccuracies in-
troduced by variable levels of awareness across towns. Furthermore, pre-
vious studies that reportedweak results (10) from the use of triage service
for epidemic detection only relied on call volumedata and ignored other
factors, such as weather conditions. Because temperature, precipitation,
and humidity are critical tomosquito survival, reproduction, and develop-
ment andcan influencemosquitopresence andabundance, ourmodel also
incorporates city-level weather data (21).

Our dengue forecasting system is based on an ensemble model and
uses the random forest learning algorithm. We predict log(S(w + 2,l))
using C(w,l), A(w,l), H(w), T(w), R(w), where S(w + 2,l) is the suspected
cases reported during the second week after week w from town l; C(w,l)
and A(w,l) are the number of calls received by health hotline and the
number of awareness campaigns carried out in weekw in town l, respec-
tively; andH(w), T(w), and R(w) are the average humidity, average tem-
perature, and average rainfall duringweekw in the city (seeMaterials and
Methods). The estimatedmodel showed that the number of calls was the
most important feature to forecast log-suspected cases, followed by
average temperature (see Table 1). The estimates generated obtained
a good fit with log-suspected cases reported from the government hos-
pitals, with amedian rootmean square error (RMSE) of 0.80 (minimum,
0.52; maximum, 1.1; n = 10 towns) and a median correlation of 0.85
(minimum, 0.80; maximum, 0.93; n = 10 towns). Figure 2 shows the
Fig. 1. Trends in call volume and suspected dengue cases measured during 2012 and 2013. (A) Time series of calls (red), suspected dengue cases
(black), and awareness campaigns (green points). Scale normalized by dividing by individualmaximum values. The x-axis label is in week of the year. (B) Density
map of calls across towns in Lahore. (C) Density map of cases across towns in Lahore. The lightest shade represents the least number, and the darkest shade
represents the highest number. The legend is normalized by the maximum value. Lat, latitude; long, longitude.
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model forecasts for 2012 and 2013 across all the towns in Lahore. In Pa-
kistan, towns are the second smallest administrative units. Towns in La-
hore have a median area of 57 km2 (minimum, 24; maximum, 516; n =
10 towns).

To highlight the value added to the current model by the addition of
data about the number of patients, the log(S(w,l)) term was introduced
in the predictors. A similar methodology was used to estimate the dengue
cases 2 weeks in the future (see Materials and Methods). The estimates gen-
erated from the newmodel obtained a median RMSE of 0.63 (minimum,
0.50; maximum, 0.82; n = 10 towns) and a median correlation of 0.88
(minimum, 0.80; maximum, 0.94; n = 10 towns), with log-suspected cases
reported from the government hospitals as shown in Fig. 3.

Estimates for dengue cases 3weeks in the future, denoted log(S(w+ 3,l)),
were also generated using a similar methodology. Estimates from the
modelwithout data about thenumber of patients as a predictor obtained a
medianRMSEof 0.80 (minimum, 0.54;maximum, 1.1;n=10 towns) and
amediancorrelationof0.84 (minimum,0.77;maximum,0.91;n=10towns),
whereas estimates from the model incorporating data about the number of
patients as a predictor obtained a median RMSE of 0.67 (minimum, 0.53;
maximum, 0.87;n=10 towns) and amedian correlation of 0.86 (minimum,
0.77;maximum, 0.93; n = 10 towns). Figures S2 and S3 show forecasts from
both models across all 10 towns.

Table 1 shows importance values for each of the predictors used in the
2-week forecast ensemble model. Because fivefold cross-validation was
performed, each value is an average of the five values respective to each
of the five models. Calculating variable importance in an ensemble
model is difficult because the importance of a variable may be due to
its interaction with other variables. In the random forest algorithm, In-
cNodePurity for a variable is the total decrease in node impurities from
splitting on the variable, averaged over all trees. This is done by mea-
suring the residual sum of squares. The first column in Table 1 contains
the importance values of predictorswhen the complete data set was used
in designing the ensemble model. The second column in Table
1 contains the importance values of predictors when the data of July
to November (the monsoon season) were used. Both models suggest
that call volume is the most important predictor of the suspected dengue
cases. The relative importance of call volume toweatherparameters ishigher
during the dengue activity season. The relative importance of awareness cam-
paignactivities increases indengue activity season, suggesting that both the
number of awareness campaigns starts to increase during the dengue sea-
sonwhen cases start to appear. The effect of awareness campaigns on other
variables, specifically calling patterns of people, also becomes more signifi-
cant during the dengue season.
Abdur Rehman et al. Sci. Adv. 2016; 2 : e1501215 8 July 2016
We compare the predictive power of the random forest model with a
generalized linear model at both a city- and a subcity-level granularity. For
both these models, we used the same training methodology as the random
forest (see Materials and Methods) and considered call volume data at the
corresponding granularity (city or subcity level). We note that reliable
weather parameters are only available at the city level. At the city-level
granularity, table S1 compares the individual predictive power of weather
parameters and call volume data in estimating the number of suspected
dengue cases 2 weeks in the future (on a log scale). The RMSE results sug-
gest that the random forest model significantly outperformed the generalized
linear model in predicting future dengue cases. Moreover, the best estimations
for the future dengue cases weremade by themodels that incorporated all
the variables as opposed to those that used only a subset of the variables. In
addition, themodels trainedusing the combinationof calls and awareness
level data provide a better estimation of future dengue cases than those
trained using weather parameter data.

At a subcity granularity (town), we fit log-suspected cases of 2 weeks
in the future using a generalized linear model. The estimates generated
from this model obtained a median RMSE of 1.11 (minimum, 0.96; maxi-
mum, 1.53; n = 10 towns) and a median correlation of 0.55 (minimum,
0.30; maximum, 0.71; n = 10 towns), with log-suspected cases reported
from the government hospitals as shown in fig. S4. In comparison, the
random forest model yields significantly lower RMSE values and signif-
icantly higher correlation than the linear models.

Finally, we compare the predictive power of a subcity-level model
based entirely on weather parameter data with our original model. Log-
suspected cases of 2 weeks in the future for each town were fit separately
using a random forest model. The estimates generated from the model
obtained a median RMSE of 1.14 (minimum, 0.84; maximum, 1.35; n =
10 towns) andamedian correlationof 0.51 (minimum, 0.26;maximum, 0.65;
n=10towns),with log-suspectedcases reported fromthegovernment hospi-
tals as shown in fig. S5.These results show thatweatherparameterdata alone
do not have enough predictive power to provide good dengue forecasts.

Deployment of a live system
Our phone-based dengue surveillance system described in this paper has
been successfully deployed in collaborationwith the government of Punjab
inPakistan, and the results arewidely disseminated through the disease ac-
tivity dashboard used by public health officials. A web service API call
retrieves data from the backenddatabase andperforms statistical analyses
offline throughbatchmodeonaweeklybasis tomakepredictionsof2weeks
in the future. To incorporate the changes in behavior of citizens calling
in, each week with the addition of newer data, the model is retrained to
incorporate the changes in behavior of users. The predictions are then
generated on the basis of the newly trained model.

Figure 4 shows the different snapshots of the health hotline interface
used by the operators and public health officials. The activity dashboard
helps them visualize quickly and evaluate the towns that are most vulner-
able to an increase in suspected cases and thereby effectively allocate field
workers who perform targeted containment activity. Field workers in Punjab
are equipped with smartphones by the government. A smartphone applica-
tion developed by the government of Punjab allows field workers to geo-tag
the location and type of containment activity they have performed. This
helps government officials ensure that the allocated task has indeed been
fulfilled by the field worker. It also helps the officials visualize the locations
of the activities and allocate additional workforce if required. Moreover,
during the weekly denguemeetings, headed by the chairman of the Punjab
government, the health officials of the most vulnerable towns are required
Table 1. Random forest importance weights for parameters of the
model trained over the total year and season (July to November).
Parameter
 Average IncNodePurity
Total
 Season
Calls
 424.34
 172.08
Awareness
 274.28
 158.41
Rainfall
 123.14
 50.89
Humidity
 287.40
 81.65
Temperature
 349.38
 137.61
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Fig. 2. Town-wise predictions of log-suspected cases from the ensemble model based on calls and weather data. Suspected dengue cases (black)
and predictions from the model (red).
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Fig. 3. Town-wise predictions of log-suspected cases from the ensemble model based on calls, cases, and weather data. Suspected dengue cases
(black) and predictions from the model (red).
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Fig. 4. Punjab Health Hotline Reporting System. (A) Interface used by operators to lodge complaints. (B) Interface used by officials to view com-
plaints. (C) Types of complaints being lodged in the system. (D) Front-end interface of our dengue cases prediction system.
Abdur Rehman et al. Sci. Adv. 2016; 2 : e1501215 8 July 2016 6 of 9
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DISCUSSION

On thebasis of the results, we conclude that call volumedata froma simple
hotline facility combinedwithwidely available city-levelweather data can
serve as a goodpredictor of future suspected dengue cases at a fine-grained
subcity level. Surprisingly, addingdata about thenumber of patients into the
existingmodel has amarginal effect in improving the prediction accuracy.
The addition of data about the number of patients only provides im-
provement in capturing the true peak of dengue activity during the high
dengue activity season. The appeal of ourmodel is its usefulness despite its
sheer simplicity; a simple phone-based health hotline can be used to forecast
the number of patients at a subcity location granularity 2 to 3weeks ahead
of time.

Setting up ahealthhotline to support disease surveillancemechanisms
has several advantages. The health hotline facility currently operational is
cost-effective, making it ideal for resource-constrained environments in
developing countries, suchasPakistan.Telephone triage–based surveillance
systems also allow governments to identify disease activity at subcity
granularities, leading to effective utilization of their limited health field
workers for targeted containment. The forecasts generated from such a
system can become a substitute to the paper-based patient report data in
outbreak detection systems, which may take weeks to compile. The
healthhotline canbe easily extended tomonitormultiple diseaseswithout
any substantial increase in allocation of resources; the current health hot-
line deployed inPakistan is also beingused tomonitor polio disease cases.
Finally, health hotlines can provide an easy and centralized interface to
gather patient reports from hospitals.

Despite the extensiveutility of the calls toahealthhotline, systemsbased
on call volume have to address several challenges carefully. First, the calls
to the health hotline included in our analysis are not exclusively made by
dengue patients; patients suffering from diseases with similar symptoms,
suchasmalaria, can contribute to an increase in call volume.Therefore, it is
important to devise criteria carefully for identifying calls pertaining to a
target disease.Moreover, the use of a healthhotline largely depends on the
amount of awareness present in a community about the health hotline.
Hence, regular awareness campaignsare essential topromote thecontinuous
use of the health hotline. These awareness campaigns are often in the form
of radio and television (TV) commercials, banner postings, and awareness
groupmeetings. At the same time, as in ourmodel, the level of awareness
needs tobe incorporated separately in thedisease forecastingmodels.Given
the fact that patients who suffer from a particular strain of dengue virus be-
come immune to it, we assume thatmost of the callers to the healthhotline
are first-time callers. The same cannot be said about diseases that are reoc-
curring in the same individuals.Hence, further studies need to be carried out
to find the exact relation between the increase in awareness level in an indi-
vidual or a community and the decrease in thenumber of calls to thehealth
hotline. Nevertheless, we suggest continuous retraining of the model with
the latest data sets to account for changes in unknownvariables over time.
Last, calling patterns within a city for individual localities may vary because
of the difference in socioeconomic conditions of the inhabitants. Given that
Abdur Rehman et al. Sci. Adv. 2016; 2 : e1501215 8 July 2016
the socioeconomic data of inhabitants are generally not available in devel-
oping countries, we recommend training separatemodels for each locality.

In summary, ourworkdemonstrateshowaresource-constraineddevel-
oping country, such as Pakistan, can effectively use a health hotline–based
system to provide accurate dengue case forecasts, at fine-grained gran-
ularities, 2 to 3 weeks ahead of time. On the basis of our deployment ex-
periences over a 3-year timeperiod,wehave observed the direct impact of
the hotline system. Our system has helped public health officials to take
early actions to contain the spread of the disease and provide hospitals
an early warning of dengue cases in their vicinity. We believe that this
system can also be used for a broad array of diseases beyond dengue and
can easily be replicated in other developing countries at low costs.
MATERIALS AND METHODS

Health hotline
In response to the 2011 outbreak in Lahore, the provincial government in
Punjab, Pakistan launched amultipronged effort to combat the epidemic
and improve its surveillance and rapid response system. A phone-based
disease helpline systemwas introduced, and a toll-free numberwaswidely
publicized through TV and radio advertisements. There are up to 100 op-
erators during an outbreak period dedicated to serving up to 5000 calls a
day. Since the inception of the system in September 2011, more than
300,000 calls have been fieldedby the system.Callers use the health hotline
to inquire if the symptoms they are having are the symptoms for dengue
disease. If this is the case, the first responder guides them to thenearest hos-
pitals and provides a brief description of the tests to be conducted and bed
availability in the hospitals. In addition, callers can request insecticide spray
at homes or in neighborhoods. The helpline has also been used to report
sewage leaks, stagnant water accumulation, and overcharging for hospi-
tal treatment. The first responders assign a category to each call. These re-
quests are used by public health workers to prioritize sanitation and
garbage collection drives. The health hotline is accessible throughout the
year to serve as an informationportal and to collect real-time citizen feed-
back. The operators of the health hotline are trained bymedical personnel
with detailed instructions to handle calls andmanuals to identify symp-
toms of dengue. During the dengue season, doctors are also available at
the health hotline, and the operators are instructed to forward the calls
to the doctors in case of any ambiguity.

Awareness campaigns
As part of the initiative, the health workers in the government of Punjab
were tasked to visit neighborhoods and spread awareness about dengue
fever. Awareness seminars are carried out in mosques, schools, and other
community settings to inform the general public about the symptoms,
spread, and prevention of dengue. The health hotline number is widely
disseminated during these seminars as ameans to discuss symptoms or
to inquire about bed availability in hospitals, if someone is suspected of
having dengue. Although these seminars are carried out throughout the
year, their frequency increases during the high dengue activity season.
Records for each awareness seminar are kept by the government for future
allocation of workers to spread awareness in a given town.

Hospitals and definition of cases
During the dengue outbreak, the government institutionalized a regime
where any patient suspected of dengue is sent to a public sector hospital
for further tests and treatment. These public sector hospitals fromLahore
7 of 9
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admitted dengue patients in specialized dengue wards and are accessible
to the general public. The government placed three computer operators in
each hospital to enter the data of dengue patients in a centralized patient
tracking system. Criteria were devised by the Dengue Expert Advisory
Group (DEAG) in Pakistan to identify suspected dengue patients so they
could be referred for laboratory tests. According to the criteria, if a patient
shows three or more of the following symptoms, the patient will be
marked as a “suspected dengue case.”These symptoms include fever of
2 to 10 days, retro-orbital pain,myalgia, arthralgia/severe backache, rash,
bleedingmanifestations (epistaxis, hematemesis, bloody stools,menorrhagia,
and hemoptysis), abdominal pain, decreased urinary output despite ade-
quate fluid intake, and irritability in infants.

Methods
For our analysis, we used data from the Punjab government’s toll-free
health hotline service. A single call unit, included in our analysis, is defined
as the call received at the health hotline, categorized by the operator as a
dengue symptoms inquiry call. The location of the caller is based on the in-
formation either provided by the caller or inferred by the first responder
using the address given by the caller. The operators are also allowed tomark
a call as irrelevant; these calls were excluded from our analysis. Dengue
awareness campaigns data were recorded from the health hotline. A
single awareness activity unit is defined as a dengue awareness seminar
carried out by a health worker from the government and reported at the
health hotline.Weather data used in our analysis were retrieved from the
Punjabmeteorologicaldepartment.Unlike the calls andawareness leveldata,
which are available at subcity location granularity, only coarse-grained city-
levelweatherparameterdatawere available. Finally, thenumberof suspected
dengue case data was retrieved from all public sector hospitals in Lahore
between 2012 and 2013. A suspected dengue patient is defined as a pa-
tient who shows symptoms of dengue and is referred for a standardized
laboratory test by the doctor. The location of the patient is determined on
the basis of the residence address provided by the patient at the hospital.

Our dengue forecasting system is based on an ensemble model. We
use call volume data divided across 10 towns in the city of Lahore.Widely
available city-level weather parameters, specifically humidity, rainfall,
and temperature, are used in the model to incorporate the seasonality
of diseases such as dengue (21). Finally, because health hotline awareness
among citizens can affect calling patterns, our system treats awareness as
a separate parameter using the number of recorded hotline publicity ac-
tivities in a given time period as proxy. It is important to highlight that
previous systems, suchasGoogle FluTrends andNHSDirect, that purely
use query volume data for prediction,may generate inaccurate estimates
of anoutbreakbecause they fail to incorporate critical awareness level data
in theirmodel (18). Awareness level can be defined as the likelihood that
a personwill use an alternative source, such as a search engine or a health
hotline, to inquire about symptoms of a disease at a given time of a year.
Specific to searchqueries, this canvary for several reasons; if a newdisease-
related drug is introduced in themarket or if a celebrity gets infectedwith
a disease, people are more likely to search online about the disease, con-
tributing to an increase in searches. This leads to an overestimation of
disease activity, which is a common problem in previous systems (18).
Hence, awareness level data need to be incorporated in themodel to cater
for varying population interest in the alternative data source.Moreover, it
is also important to note that although an increase in search queries and
internet awareness can be a result of a wide range of factors, increasing
awarenessof ahealthhotline is largelydependenton thepublicity it receives
during the awareness campaigns. Because these awareness campaigns and
Abdur Rehman et al. Sci. Adv. 2016; 2 : e1501215 8 July 2016
their locations can be easily monitored, they can be easily accounted for in
our model. Finally, the suspected dengue case data were taken from the
hospitals in Punjab to serve as the response variable in our model.
Our ensemble model uses the random forest learning algorithm. The

choice to use a random forest–based learning algorithm was largely
guided by the advantages over linear regression/classification methods.
Given the nonlinearity observed in the data, the random forest algorithm
significantly mitigates the possibility of overfitting by using an ensemble
collectionof decision trees and randomizing over features used in training
each individual decision tree (see Fig. 1 and fig. S4). Random forests also
allowfor easy interpretabilityof thevariable importanceof features.Although
other more sophisticated models, such as gradient-boosted decision trees,
were viable alternatives, the performance gains we achieved using ran-
dom forests combined with the convenience of training and deployment
into our online outbreak detection system led us to favor random forests.
Between 1 January 2012 and 31 December 2013, data from the city of

Lahore were recorded from the mentioned sources. Weekly counts for
each town were computed separately. Weekly aggregates of 2 years for
10 towns generated a total of 1030 points. To validate our hypothesis, we
performed, fivefold cross-validation. The data points were split into five
randomly selected nonoverlapping folds, each containing 206 points. A
region-independent random forest model of regression trees comprising
500 trees and three-node sampling was trained using four folds and va-
lidated on theheld-out fold. Theprocesswas repeated until each fold had
beenvalidated.Theperformanceof themodelswas evaluatedusingRMSE
and correlationvalues. Thiswasdone to capture the efficiencyof themodel
in forecasting the exact values andcapturingvariations in peaks and lows of
the predicted values.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/2/7/e1501215/DC1
fig. S1. Cross-correlation between suspected incidences reported at hospitals and calls
received at the health hotline in Lahore for the year 2012.
fig. S2. Town-wise predictions of 3-week log-suspected incidence forecast from ensemble
model based on calls and weather data.
fig. S3. Town-wise predictions of 3-week log-suspected incidence forecast from ensemble
model based on calls, cases, and weather data.
fig. S4. Town-wise predictions of 2-week log-suspected incidence forecast from generalized
linear model based on calls and weather data.
fig. S5. Town-wise predictions of 2-week log-suspected incidence forecast from location-
dependent ensemble model based on weather data.
table S1. RMSE values between predicted and actual number of log-suspected cases for
various models trained on coarse-grained city-level data set.
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