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ABSTRACT
Counterfeiting of physical goods is a global problem amounting

to nearly 7% of world trade. While there have been a variety of

overt technologies like holograms and specialized barcodes and

covert technologies like taggants and PUFs, these solutions have

had a limited impact on the counterfeit market due to a variety

of factors - clonability, cost or adoption barriers. In this paper,

we introduce a new mechanism that uses machine learning algo-

rithms on microscopic images of physical objects to distinguish

between genuine and counterfeit versions of the same product. The

underlying principle of our system stems from the idea that micro-

scopic characteristics in a genuine product or a class of products

(corresponding to the same larger product line), exhibit inherent

similarities that can be used to distinguish these products from

their corresponding counterfeit versions. A key building block for

our system is a wide-angle microscopy device compatible with a

mobile device that enables a user to easily capture the microscopic

image of a large area of a physical object. Based on the captured

microscopic images, we show that using machine learning algo-

rithms (ConvNets and bag of words), one can generate a highly

accurate classification engine for separating the genuine versions

of a product from the counterfeit ones; this property also holds for

“super-fake” counterfeits observed in the marketplace that are not

easily discernible from the human eye. We describe the design of

an end-to-end physical authentication system leveraging mobile

devices, portable hardware and a cloud-based object verification

ecosystem.We evaluate our system using a large dataset of 3 million

images across various objects and materials such as fabrics, leather,

pills, electronics, toys and shoes. The classification accuracy is more

than 98% and we show how our system works with a cellphone to

verify the authenticity of everyday objects.
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1 INTRODUCTION
Counterfeit goods represent a massive worldwide problem with

nearly every high valued physical object or product being directly

impacted by this issue. Anecdotal evidence and business reports

point to counterfeit trade representing a significant 7% of world

trade today [4]. It is also a known fact that the profits garnered by

counterfeiters across a variety of markets has been one of the im-

portant funding sources for several illegal and potentially harmful

activities around the world [3].

Fighting the battle against counterfeit goods has been a never-

ending one. A wide-range of overt and covert technological so-

lutions have been proposed to address the counterfeit detection

problem [23–25, 29, 38, 41]. Overt technologies such as different

versions of holograms [9], barcodes and RFID supply integrity so-

lutions [12] physically add a tag to a physical object and each of

these solutions have their own set of security limitations where

the tag can be removed, forged, potentially duplicated or replaced

on other physical goods. Covert technologies such as taggants [10]

and Physical Unclonable Functions (PUFs) [6] offer stronger au-

thenticity guarantees but these solutions are often expensive or

even hard to adopt; across many markets for high valued objects,

manufacturers may place objections to adding covert solutions to

the physical objects especially for luxury, fashion or art items.

We use the term authenticating a physical object to refer to the

task of identifying whether a physical object is genuine or coun-

terfeit. In this paper, we introduce a novel and robust method to
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authenticate physical goods in the microscopic regime using ma-

chine learning techniques. The key idea of our solution is based

on the premise that objects manufactured using prescribed or stan-

dardized methods tend to have similar visual characteristics at

a microscopic level compared to those that are manufactured in

non-prescribed methods, which are typically counterfeits. Using

these characteristics, distinct groups of objects can be classified and

differentiated as authentic or not authentic.

Given a physical object of a particular product line, we are fo-

cused on developing a non-intrusive solution to easily distinguish

authentic versions of the product produced by the original manufac-

turer and fake versions of the product produced by counterfeiters.

The basic building block of our solution is to extract microscopic
image of a physical object and use them to differentiate genuine

versions of a product from counterfeit ones. To build a highly accu-

rate classification engine, our solution takes a supervised approach

where we train a machine learning algorithm against a known set

of genuine and counterfeit products of a particular product line.

Essentially, the machine learning algorithm is trained on a high-

dimensional feature space on the classification task of learning

the differences in the microscopic characteristics of genuine and

counterfeit versions of the same product.

Capturing high quality microscopic images in a consistent fash-

ion, especially at large magnifications (100-300x) is a potentially

complicated and arduous task for a user. At high magnifications,

conventional microscopes also have a limited field of view. To

address these limitations, we designed a low-cost, high quality

portable microscope that can capture a wide-angle, high resolu-

tion microscopic image of a physical object. This is a key building

block for our solution since it enables a single image to capture

microscopic features over a larger surface area of a physical object.

Given a few genuine and counterfeit objects of a particular prod-

uct line, we use the portable microscopic hardware to generate a

large labeled training set of microscopic images gathered from dif-

ferent regions within each object. We trained two different classes

of supervised machine learning algorithms with a different set of

features for the classification task. In the first algorithm, we use

an SVM based classification engine using bag of visual words by

extracting features based on histogram of oriented gradients, per-

forming quantization and using a SVM/kNN classifier. To improve

upon the classification accuracy, the second algorithm trained a

deep (multi-layered) convolutional neural network (CNN) architec-

ture to classify fine-grained features, and then used region based

CNN to select regions in an image to improve classification accu-

racy.

We evaluate our technique using a large dataset of 3 million

microscopic images (counting data augmentation) extracted from

our microscopic imaging device. The various types of materials we

classify include 20 types of leather, 120 types of fabrics, 10 types

of paper, 10 types of plastic, authentic and fake NFL jerseys and 2

types of Viagra pills. Using the SVM based algorithm, we achieve a

classification accuracy of more than 95% for authenticating based

on a single microscopic image of a new object and the CNN based

algorithm offers an accuracy of 98%. We note that in practice to

authenticate a physical object, one would test with several micro-

scopic images gathered from random positions within the physical

object, which should substantially increase the overall classification

accuracy of a given object. We demonstrate the practical value of

our system by showing how it can be applied to authenticate luxury

handbags and we are working towards deploying our system to be

used by luxury resale vendors.

2 RELATEDWORK
In the object authentication space, the related work can be catego-

rized into two sets. i) Object authentication using over and covert

technology, ii) Image classification using machine learning.

Object authenticationusing overt and covert technologies:
There are several overt technology that are used in authentication

of physical products. Taggants such as holograms, barcodes, spe-

cially manufactured paper [24, 25, 38], various types of ink [23–

25, 29, 38, 41], special taggants such as ProofTag [10] and Cryp-

toglyps [1]. There are few companies that operate in the micro-

scope based forensic analysis sector such as IQStructures [7] that

use microscopes in forensic analysis to identify specific embedded

structures. Recently, World Health Organization released a report

on anti-counterfeiting technology to protect medicines [16]. Micro-

taggants is one of the solutions which can be detected by using

microscopes to identify a specific class of pills. Nano-printing is

also used in identifying classes of medicines in packaging.

In covert techniques there is Laser Surface Authentication from

Ingenia Technology [6, 18], fiber fingerprinting by Smithet. al. [22,
36], PaperSpeckle by Sharma et al. [34], print signatures work by

Zhu et.al. [42] and modeling 3D fiber structure of paper by Clarkson

et. al. [20].
Our technique differs from the above in three significant ways. i)

In the overt/covert techniques mentioned, they need to apply their

technique at the source of creation or manufacturing of the product.

Whereas in our case, we don’t need to be present at the source of

manufacturing of the product. Unlike overt technologies such as

inks, barcodes, holograms, micro-structures etc., we do not need to

embed any substance within the product or object. Our technique

is non-invasive and does not modify the object in any way. ii)

There is no need to tag every single item. We can classify original

and duplicate based on the microscopic variations. iii) Current

overt/covert authentication techniques cannot authenticate objects

there were not tagged earlier. In our case, since we use machine

learning techniques, we can authenticate new instances of the

object. iv) Most of techniques such as nano-printing, micro-taggants

are expensive to embed onto the product. Plus their detection based

on specialized, expensive microscopic handheld devices which is a

problem in consumer/enterprise adoption. Our device and cloud

based authentication solution that works with a mobile phone is

low cost and simple to use (as described in Section 6).

Image classification using machine learning: Supervised,
semi-supervised and unsupervised learning techniques are used

in large scale classification of images. Bag-of-words [19, 31] and

Convolutional neural networks (CNNs) [27, 30, 32] are two impor-

tant techniques in large scale image classification. Recently, deep

CNNs such as Googlenet [37], VGGnet [35], Residual Nets [26] have

given state-of-the-art performance in Imagenet [21] classification

and localization tasks. Fine grain visual classification is an active

area of research where fine grained visual classification has been
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applied to datasets ranging from birds [17] to aircrafts [33]. Our

approach differs from the above in three ways: i) Feature extraction

and training to identify microscopic variations, ii) classifying mi-

croscopic images of objects based on the mid-level and fine-grained

features, iii) using a combination of techniques (bag of words, deep

convolutional nets) and microscopic imaging hardware in order to

authenticate objects.

3 THREAT MODEL
The game of counterfeit goods production has been alive for cen-

turies. Our goal in this paper is to design a non-intrusive counterfeit

detection system that significantly makes it harder for the coun-

terfeiter to design non-authentic goods that resemble the original.

The key intuition of our system design is to extract features of a

physical object at a granularity at least an order smaller the preci-

sion of manufacturing used by both the original manufacturer and

the counterfeiter. Specifically, we aim to examine physical objects

at a microscopic granularity with a magnification of 100 − 300x
with a precision of 5 microns. This precision typically represents

an order of magnitude or more compared with the mechanical

precision of manufacturing of most physical goods. For a certain

class of electronic goods including chips and circuits that rely on

nano-fabrication techniques, our counterfeit detection solution may

not be applicable. The first assumption in our threat model is that

the precision in manufacturing of a physical good that we aim

to authenticate should be at least 1-2 orders of magnitude lower

than the precision of microscopic imaging of the physical surface

of the good. One area we are specifically interested is luxury and

fashion goods. Given that many high end goods are tailor-made,

the precision assumption holds for most of these objects.

Secondly, we empirically show based on a wide range of ob-

jects that objects manufactured using prescribed or standardized

methods tend to have similar visual characteristics at a microscopic

level. This is the key property we exploit in our system design.

These visual characteristics often represent random patterns or

contours that appear over a very small area in a microscopic image.

Here, we assume that given that the limitation in the precision

of manufacturing of a counterfeiter, it becomes a very expensive

proposition for the counterfeiter to replicate the same visual pat-

terns in his manufacturing. In theory, a counterfeiter with a large

amount of resources and access to very high precision manufac-

turing machinery can generate a counterfeit object with similar

microscopic visual characteristics as the original object. We assume

that common-case counterfeiters who aim to make a quick buck

do not have the resources to launch such an attack on our system.

Finally, our system aims to deal with different levels of counter-

feit sophistication ranging from fakes to super-fakes. The most com-

mon case counterfeiter assumes no direct access to the supply chain

of the original product line and simply aims to replicate/reverse

engineer the manufacturing process. However, in the case of lux-

ury handbags, a sophisticated counterfeiter can get access to the

original fabric from the tannery but only changes the final pro-

duction process. For our counterfeit detection system, we assume

that while even portions of a physical object may potentially be

from the original supply chain, there are at least a few well defined

regions of a physical object that are modified by the counterfeiter

using a different process from that of the original manufacturer.

For example, an LVMH super-fake luxury bag may use the same

canvas as the original but the counterfeiter may use a different

process for printing the logo on the bag. In the extreme case, if

the counterfeiter infiltrates the final supply chain of a product and

gets access to originals to be sold in the counterfeit market (due

to a rogue employee), our solution is not designed to detect such

counterfeits.

4 WIDE-FOV MICROSCOPIC IMAGING
A key building block of our system for authenticating physical

objects is the use of microscopic images. Capturing high quality

microscopic texture images in a consistent fashion, especially at

large magnifications (100-300x) is a potentially complicated and

arduous task for a user. At high magnifications, conventional micro-

scopes also have a limited field of view. In this section, we provide

a brief outline of our wide-area microscopic imaging device and

how it helps in capturing consistent microscopic images. Figure 1

shows the handheld device. The key aspects of our microscopic

imaging hardware are: wide field of view, high magnification and

high resolution.

4.1 Need for Microscopy
In the counterfeiting industry, most of the counterfeits are manufac-

tured or built without paying attention to the microscopic details

of the object. Even if microscopic details are observed, manufac-

turing objects at a micron or nano-level precision is both hard and

expensive. This destroys the economies of scale in which the coun-

terfeiting industry thrives. Hence we use microscopic images to

analyze the physical objects.

Microscopic images are different from ordinary macroscopic

images or photos due to a variety of factors, i) complex multiple

scattering in themedium produces artifacts not present in themedia

–speckles, shadows and inter-reflections ii) images vary based on the

reflective or diffuse nature of the medium, iii) repeatedly obtaining

or registering the same image is difficult due to its microscopic

size. While there are off-the-shelf microscopes [15], the images

are inconsistent and the build quality is low. If the input image to

system is inconsistent and of low quality, then microscopic image

analysis also will be of low quality. Due to address this problem,

we have designed our own handheld microscope device.

4.2 Special Features of our Device
Due to space constraints, we summarize the salient features of

our device which is currently deployed and sold as part of our

authentication service.

(1) Wide angle Field-of-View(FOV): A traditionalmicroscope

that provides a magnification of 200-300x has a limited field

of view of 2mm x 2mm. In contrast, our device can provide a

FOV of 1cm x 1cm under 200-300x magnification with very

low distortion and no barrel effects where the corner parts

of the microscopic image can often be blurred in traditional

microscopes.

(2) Diffraction-limited: The device is designed such that the

for the field of view the imaging system is diffraction limited.
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Figure 1: Image of the device

(3) High resolution, low distortion: The device is designed
to almost match the theoretical capability of the lens con-

figuration. This gives us high resolution in the order of 7

microns or less. The resolution can be further improved by

varying the focal length to achieve higher resolution. The

field curve and distortion are minimal (within 1%).

(4) Asymmetrical Double Gauss architecture: The lens ar-
chitecture reduces optical aberrations and distortions (such

as barrel effect, astigmatism, pin cushion effect, spherical

distortion, chromatic aberration and field curvature)

(5) Portability and ease of use: The device is portable (size:
50mmx50mmx100mm) and can be used by anyone with little

or no help. This is in stark contrast to microscopes that

require precision stand and table to extract images. Our

device can be simply placed on top of the object without

any stand or table and the image can be extracted using a

cellphone or computer. Since the focus is fixed the object’s

surface will always be in focus. Due to this feature the user is

easily able to register and verify the authenticity of objects.

(6) Uniform illumination: We have used a light guide based

diffusion technique to provide uniform illumination to the

field of view. This helps us in providing consisting results

across devices.

5 ALGORITHM
We use two types of techniques to identify the authenticity of a

physical object. One is the bag of features or bag of visual words

classifier, which comprises of a traditional feature detector, quanti-

zation scheme and an SVM classifier to categorize images. Another

is the Convolutional Networks framework which uses convolution

and pooling layers with gradient descent to classify images. In this

section we describe these two types of classification techniques

and how we use them in the context of classifying authentic versus

fake objects.

5.1 Bag of visual words
We use a five stage process in classifying microscopic images to

verify authenticity. i) Extract features of microscopic images using

a patch, corner or blob based feature descriptor, ii) quantize the

descriptors such that the nearest neighbors fall into the same or

nearby region (bag), which form the visual words iii) histogram the

visual words based on the descriptors of the microscopic images, iv)

use a kernel map and linear SVM to classify the images (as either

authentic or fake) v) during the testing phase, a new microscopic

image is classified using the same procedure to verify if the image

is authentic or not. Some of the the hyperparameters that need to

optimized to achieve high level accuracy are: the level of quanti-

zation, feature extraction parameters such as number of features,

location, feature size and number of visual words.

Feature extraction. Once the image is captured using the micro-

scope imaging hardware, it is split into chunks of smaller images

for processing. Splitting an image into smaller chunks is important

for multiple reasons: i) the field of view of the microscopic imaging

hardware is large (compared to off-the-self digital microscopes)

around 12mm x 10mm. We need to look at microscopic variations

at the 5µm-10µm range, so the images have to be split such that we

are able to process these minor variations. ii) splitting the image

into smaller chunks helps in preserving the minor variations in

the visual vocabulary. Since during the quantization process minor

variations of the image tend to get lost.

Each image chunk or patch is then processed using a dense fea-

ture descriptor such as DSIFT or DAISY to extract the descriptors.

Dense feature descriptors are important because we would want to

capture the microscopic variations across the entire image rather

than at specific interest points as in traditional object detection.

Since both DSIFT and DAISY do not process the image at multi-

ple scales, we scale the image at different levels and feed it into

DSIFT/DAISY system. Features are extracted at various step sizes

ranging from 4 to 12 pixels and descriptors are generated at every

location. The step size affects the sensitivity of the classifier to clas-

sify fine-grained features. If the step size is small 4 pixels, then more

number of features are generated which capture more fine-grained

details in an image. The DSIFT descriptor is a 128 dimensional vec-

tor and while the DAISY descriptor varies based on the rings and

histograms per ring, we have used a 2-ring 6-histogram per ring,

104 dimensional DAISY descriptor.

Quantization. The descriptors are clustered using k-means clus-

tering based on the number of visual words. The number of visual

words which are essentially the number of clusters is used to con-

trol the granularity required in forming the visual vocabulary. For

example, in hierarchical image classification, at a higher level with

inter-object classification the vocabulary can be small; while in fine-

grained image classification such as in this case, the vocabulary

needs to be large in order to accommodate the different micro-

scopic variations. Hence, we don’t use a fixed number of visual

words, but a range so that we capture the diversity in microscopic

variations. This means running k-means clustering for a range of

clusters instead of a fixed sized cluster. The k-means cluster centers

now form the visual vocabulary or codebook that is essential in

finding whether a reference image as enough words to classify it

as authentic (or fake).

Histogram of visual words and classification. The next step in the

algorithm is to compute the histogram of visual words in the image

chunk. The keypoint descriptors are mapped to the cluster centers

(or visual words) and a histogram is formed based on the frequency

of the visual words.

Once we have the visual words of training images, we use SVM

to train the system. We use three types of SVMs: i) linear SVM, ii)

non-linear RBF kernel SVM, and iii) a χ2-linear SVM.

While linear SVM is faster to train, the non-linear and the χ2-
linear SVM provide superior classification results when classifying
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large number of categories. We train the images using one vs. all

classification, but this approach becomes unscalable as the training

set increases (number of categories increase). Another approach

is the one vs. one approach where the pairs of categories are clas-

sified. We employ both the approaches and see that both provide

comparable performance under different scenarios.

We also apply the k-nearest neighbor(k-NN) classifier to the

histogram. While k-NN classifier works well for small datasets, for

large datasets that the memory requirements for near neighbor

search becomes unwieldy. The bag of visual words results for both

SVM and k-NN based techniques are presented in the evaluation

section.

5.2 Convolutional Neural Networks
Feature extraction in object recognition tasks using bag of visual

words method involves identifying distinguishing features. Hand

crafted feature extraction using DSIFT, DAISY and other techniques

are often used. If the image statistics is already known then hand-

crafting features would be ideal. But if the image statistics are

unknown then hand-crafting features would be a problem since it

is unclear what would be the set of distinguishing features –features

that help to classify the image. Both fine-grained andmacro features

in an imagemight be lost because the hand crafted feature might fail

to identify them as regions or points of interest. To avoid this issue

in classifying microscopic images, we use Convolutional Neural

Networks (CNN) which is fast becoming a commodity in image

classification.

We describe two types of convolutional neural networks (CNN)

architecture that achieves a high level of accuracy across the datasets

of various microscopic images of materials. Our CNN is based on

the architecture of Krizhevsky et al. [30] which won the ILSVRC

2012 Imagenet classification challenge. The first architecture is an

8-layer network of convolution, pooling and fully-connected layers

that essentially fine-tunes the Krizhevsky et al. architecture to suit

the microscopic image dataset. In the second architecture we re-

move one of the fully connected layers, but reduce the filter size and

stride in the first convolution layer in order to aid the classification

of fine-grained features.

CNN1: First Architecture. The first network architecture consists

of 3 convolution layers along with 3 max-pooling layers and ReLU

(Rectified Linear Unit), followed by 2 independent convolution

layers (which do not havemax-pooling layers) and 3 fully connected

layers in the final section. The final classifier is a softmax function

which gives the score or probabilities across all the classes.

The architecture is presented in Figure 2. The input RGB (3 chan-

nel) image is down sampled to 256x256x3 and is then center cropped

to 227x227x3 before entering the network. In the first convolution

layer the input image is convolved with 96 different filters with a

kernel size of 11 and stride 4 in both x and y directions. The out-

put 110x110x96 feature map is processed using ReLU, max-pooled

with kernel size 3, stride 2 and is normalized using local response

normalization to get 55x55x96 feature map. Similar operations are

done on the feature maps in subsequent layers. In layer 2, the fea-

ture maps are convolved, processed using ReLU, max-pooled and

normalized to obtain a feature map of size 13x13x256. The next

two layers (layers 3,4) are convolution layers with ReLU but no

max-pooling and normalization. The output feature map size is

13x13x384. Layer 5 consists of convolution, ReLU, max-pooling and

normalization operations to obtain a feature map of size 6x6x256.

The next two layers (layers 6,7) are fully connected which outputs a

4096 dimensional vector. The final layer is C-way softmax function

that outputs the probabilities across C classes. In our case, we use

the pre-trained weights of the Krizhevsky model, but train the final

layer which is the input to the softmax function. This “fine-tuning”

of the pre-trained model works achieves good accuracy in clas-

sifying microscopic images of different materials (with different

granularity).

Figure 3 shows the CNN1 pipeline in action classifying two im-

ages. One is a microscopic image of the outer fabric of an authentic

Louis Vuitton Monogram bag and another is a microscopic image

of the outer fabric of a counterfeit Louis Vuitton Monogram bag. To

the naked eye, it is hard to distinguish between the authentic and

fake images, as both the images look almost the same. But CNN1

successfully distinguishes/classifies the images into authentic and

fake classes. The convolution layer 1 shows the first 36 filters (out

of the 96) for each image and convolution layer 3 shows the 384

filters of each image. While both images look similar there are

minor differences. In the fully connected layer 6 (fc6), the 4096

dimensional vector of each image is different. Similarly in the fully

connected layer 7 (fc7), the 4096 vectors corresponding to each

image is different (we can now distinguish the two vectors and

thereby the images). After fc7, the softmax function takes the 4096

vector as input and outputs the scores/probabilities for each class.

CNN2: Second Architecture. We use various types of convolu-

tion kernels on the candidate image to generate a feature maps of

different sizes, as part of the convolution layers. These convolu-

tion capture diverse set of distortions possible on the microscopic

image. Since the image is subjected to variations and distortions

from image capture and tampering of the object’s surface, we apply

convolutions to the image, to make the network robust against such

distortions.

In the second architecture, we reduce the filter size and stride

in the first convolution layer. Instead of kernel size of 11, we use 8

and instead of stride 4 we use stride 2. This change increases the

number of parameters hence we have to train with a much smaller

batch size. We reduce the training batch size from 250 images to

50 images. This type of technique of reducing the filter size and

decreasing the stride is done by Zeiler et al. [40] to increase the

recognition/classification of fine grained features. The only change

in the second architecture compared to the first architecture is

the reduction in the filter and stride sizes in the first convolution

layer. Since the first layer is different, we cannot use the pre-trained

weights of the Krizhevsky model. We train the entire network from

scratch using new sets of weight initialization, biases, learning rates

and batch sizes. Due to the depth of the network it is prone to over

fitting, so we used data augmentation to artificially increase the

number of images in the dataset. We used label-preserving data

augmentation techniques such as translation, shifts, horizontal and

vertical flips, random cropping of 227x227 regions (from the original

256x256) and rotations. These augmentation techniques increased

the dataset by 50x. Also, we used random dropouts in the final two

layers to regularize and reduce over fitting.
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Figure 2: Classification and authentication of physical objects from microscopic images using 8-layer convolutional neural
network

6 EVALUATION
We evaluate our system on 1.2 million microscopic images spread

across the following objects and materials.

(1) Leather:We capture 30,000microscopic images from 20 types

of leather. The leather samples are obtained from Restoration

Hardware, Abea Leather in New York and Tanneries Haas

from France, which supplies leather to most of the top leather

brands in the world [13].

(2) Fabric: We extract 6,000 images from 120 types of fabric. The

fabric samples are obtained from the Fabric Science kit [5].

(3) Plastic: We extract 2000 images from 15 types of plastic

surfaces.

(4) Paper: We extract 2000 images from 10 types of paper. The

paper samples are from Neenah Paper [8].

(5) Jersey: We extract 500 images from 2 authentic NFL jerseys

purchased from NFL store; and 2 fake NFL jerseys obtained

from street hawkers.

(6) Pills: We extract 200 images from few Viagra pills to show

the variation and classification results.

6.1 Methodology
Each object/material dataset is randomly split into three sets: train-

ing set, validation set, test set, such that training set contains 70%

images, validation set contains 20%, and the test set contains 10%

of the images. The algorithm runs on the training set and the vali-

dation accuracy is tested on the validation set. Once the learning

cycle (training, validation) is completed (either by early stopping, or

until the max iteration is reached), the algorithm is run on the test

set to determine the test set accuracy. In results in Table 1 refer to

the 10-fold cross validation accuracy on the test set. (The dataset is

split into training, validation, testing set 10 times and the accuracy

is determined each time. 10-fold cross validation accuracy is the

average test accuracy across 10 trails)

From the bag of visual words perspective, we apply four types

of classification methods. i) DSIFT for dense feature extraction, k-

means for quantization, and SVM for final classification, ii) DAISY

for dense feature extraction, k-means for quantization and SVM

for final classification. For the rest, we use k-NN instead of SVM in

the final step. For DSIFT we use VLFeat library [39] and for DAISY

descriptor we use the implementation in skimage [11]. The results

for each of these cases is presented in Table 1.

From a CNN perspective, we apply three types of methods. i)

CNN1 which is a fine-tuning of the Krizhevsky model, ii) CNN2,

in which the first convolution layer and last layers are changed

for fine-grained classification, iii) R-CNN, which is a region based

CNN that selects specific regions within an image and then uses

CNN for classification. The results for each of the techniques are

presented in Table 1.

For CNN, in order to avoid overfitting and get good test accuracy,

we increase the size of the dataset artificially by generating label-

preserving distortions such as 4 rotations, flips in each rotation,

12 translations (wrap side and up) and cropping the 256x256 input

image into 30 randomly cropped 227x227 regions. This increases

the dataset size by 50x to 3 million images. (Note that this data

augmentation is performed once the dataset is split into training,

validation and test sets. Else we would be validating/testing for

different distortions of the same training images)

The training parameters for CNN are as follows. For CNN1, the

learning rate is 0.001, step size is 20000, weight decay is 0.0005,

momentum is 0.9 and batch size of 50. For CNN2, the learning rate

is 0.0001 and the step size is 200000. Since we are training CNN2

from scratch the learning rate is significantly lower and the step

size is higher than CNN1. Caffe [28] was used to train the CNNs

on a NVidia K520 GPU with 1536 CUDA cores and 4GB of video

memory.

6.2 Results
Leather. The test accuracy across 30,000 leather samples is given

in Table 1. (After data augmentation, the size of the dataset in-

creases to 1.5 million images). For the bag of visual words model,

the average test accuracy after 10-fold cross validation is about

93.8%. k-NN based method tends to perform lower than the SVM

based method and DSIFT performs slightly better than the DAISY

descriptor. Perhaps if the descriptor size in DAISY is increased we

would be able to get higher accuracy rates. For the CNNs, the av-

erage test accuracy is 98.1%. The last layer is a 20-way softmax

classifier to classify 20 types of leather.

Fabric. The average test accuracy for the bag of words model is

92%. One of the reasons for the decrease in accuracy rate compared

to leather samples is due to increase in the class size. The test

accuracy for CNNs is 98.3%. The data augmentation and dropout

techniques increase the accuracy rates when compared to the bag of

visual words model. Due to data augmentation the dataset increases

to 300,000 images.

Plastic. This is a 10-way classification across 10 different types

of plastic materials. The average test accuracy for bag of words

model is 92.5%. For CNNs, the average test accuracy is 95.3%.

Paper. The average test accuracy for paper across 2000 images

and 10 types of paper is, 94.3% for the bag of words model and

KDD 2017 Applied Data Science Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

2016



Authentic image

Fake image

convolution layer 1

convolution layer 3

convolution layer 1

convolution layer 3

Authentic  - fully connected layer 6

Fake - fully connected layer 6 Fake - fully connected layer 7

Authentic - fully connected layer 7

Figure 3: Visualizations of the convolutional layers of an authentic image and a fake image. The authentic image is of an
authentic Louis Vuitton Monogram bag and fake image is of a fake Louis Vuitton Monogram bag. Convolution layer 1 shows
the first 36 filters (out of the 96 filters); convolution layer 3 shows the 384 filters; fully connected layer 6 shows the differences
in the 4096 vector of each image; similarly, fully connected layer 7 shows the differences in the 4096 dimensional vector of
the authentic and the fake image.
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Method Leather Fabric Plastic Paper Jersey Pills

DSIFT + k-means + SVM 97.8 95.3 93.6 96.2 98.5 98.6

DSIFT + k-means + k-NN 91.2 90.2 94.2 93.1 95.3 98.6

DAISY + k-means + SVM 95.6 94.3 94.2 96.5 96.2 96.5

DAISY + k-means + k-NN 90.7 88.2 95.2 90.3 97.5 96.4

CNN1 97.6 98.7 98.1 97.4 98.3 98.7

CNN2 98.6 98.0 92.5 92.8 99.3 98.4

Table 1: 10-fold cross validation test accuracy (%) for bag of visual words and convolutional neural networks based authenti-
cation system

95.1% for the CNNs. The results of both bag of words and CNNs

are comparable with respect to classification of paper samples.

Jersey. With NFL jerseys we perform binary classification. Given

an input image we determine if the image is authentic or fake. The

average test accuracy for bag of words model is 94% and CNNs is

98.8%. CNN2 is able to capture the fine-grained details in some of

the images, which gives it a superior performance compared to the

rest of the methods.

Pills. In this dataset (which consists of Viagra pills), we do not

have fake Viagra pills. So we perform binary classification of classi-

fying two different types of Viagra pills. The average test accuracy

for bag of words model is 96.8% and for CNNs it is 98.5%.

7 DEPLOYMENT EARLY EXPERIENCES
We have developed and deployed a mobile-cloud based authentica-

tion systemwhere our microscopy hardware captures and transmits

microscopic images over WiFi to a mobile client. The mobile client

application interacts with a cloud based authentication service and

uploads the microscopic data from a physical object to the cloud

and the cloud service runs the machine learning algorithms to de-

termine whether an object is authentic or fake. We have built an

iOS app that interacts with the device and the server, for the au-

thentication phase. The iOS app is currently available in the Apple

AppStore; the authentication service in the application can only be

initiated in conjunction to our microscopic hardware. During the

authentication phase the steps are as follows. i) the user opens the

mobile app, places the device on the object, ii) the device streams

live video of the microscopic surface of the object via Wifi onto the

app, iii) the user captures the image (or multiple images) using the

app and uploads it to the server, iv) in a few seconds the server re-

sponds with a message saying the object the was either “Authentic”

or “Fake”.

Training phase and Data Collection: In the training phase,

we have worked with data collectors in several supply chain points

to extract a large database of microscopic images from different

products or classes of products to form a training set. These im-

ages are trained and tested to generate a model that is ready for

authentication (details are presented in Section 5.2). In the case of

authenticating luxury handbags, we acquire bags of one particu-

lar brand, say Louis Vuitton (LV) and extract lot of microscopic

images using our device. Every region of the bag is scanned and

the images are uploaded, processed and trained in the back end

server. This procedure is done for both authentic and counterfeit

versions of the physical product. We have worked with several

suppliers and human authenticators in the supply chain to obtain

labeled information of authentic and fake versions of a physical

object. Once trained, cross validated and tested, the model is ready

for the authentication phase. During the training phase, we repeat

the process of holding out different sets of input data for internal

testing the consistency of the input dataset to identify any poten-

tial mislabeled data; any such mislabeled data is re-examined by a

human authenticator and potentially removed if determined to be

spurious. In addition, as a first pre-filtering step, all data entered

in the system is also manually verified and cleaned by a human

authenticator. In essence, we run the training dataset for several

internal tests before executing any machine learning algorithms on

the data.

Rollout for Luxury Handbags: We have initially rolled out

our authentication service for luxury handbags. In the case of au-

thenticating luxury handbags, the user uploads multiple images

from different regions of the bag to check for authenticity. Here,

we have trained independent machine learning algorithms on a

per region basis and can achieve high end-to-end authentication

accuracy with negligible false positive rates. The service is cur-

rently in use by several reputed luxury resale stores and the initial

feedback has been highly positive. The system and the app have

been designed to be highly user friendly to promote easy adoption.

Based on tests conducted by customers, our system is able to also

easily identify “superfake” bags which may tend to use the same

material on some regions. Even if the fake good has a significant

characteristic difference across one region, our current system is

able to detect such fakes with high accuracy.

8 CONCLUSION
This paper describes the design, implementation and evaluation of

a practical and non-intrusive system for authenticating physical

objects and classifying genuine and counterfeit goods with high

accuracy. The key idea of our system is to use a supervised ma-

chine learning algorithm to learn the microscopic characteristics

of genuine physical objects corresponding to a product line and

differentiate them against the microscopic characteristics of coun-

terfeit versions of the same product line. We describe the design of a

new wide-angle image capture device that can capture high quality,

high resolution microscopic images of a relatively large area at

100− 300x magnification. We train our system using a collection of

microscopic images gathered from pre-labeled versions of genuine

and counterfeit goods of a particular product line and test it on

KDD 2017 Applied Data Science Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

2018



any new object of that product line. Our SVM based supervised

algorithm provides an accuracy of 95% for authenticating based on

a single microscopic image and the convolutional neural network

provides an enhanced accuracy of 98% per image. Assuming each

image capture of the same physical object is relatively independent,

when the system is tested on several microscopic images of the

same physical object, our system provides a strong guarantee to

differentiate authentic goods from counterfeit ones. We have tested

out system on a variety of different physical objects and surfaces

and we believe our system is quite generic in scope; we aim to

apply it to authenticate a wide-spectrum of real-world physical

goods. We are currently beta-testing our solution at scale with a

luxury resale vendor for the specific vertical of luxury handbags

and fashion goods. While our solution may not be perfect to eradi-

cate the problem of counterfeit goods, we hope that our solution

when adopted at scale does make it significantly harder for the

counterfeiter to defeat this approach.
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