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Abstract
We exploit block-covariate structure in GWAS
datasets to regularize linear classification models.
Our algorithm first finds blocks of correlated SNPs,
and adds a separate sparsity constraint for each
one. When this regularization is added to the hinge-
loss, we can achieve high test accuracy on a GWAS
dataset, while still maintaining a very high signifi-
cance level for each of the SNPs returned. Such an
approach can potentially serve as a substitute for
manual subsampling techniques.

1 Introduction
The genome is a great source for insight into previously un-
explained diseases like [Tolstoi and Smith, 1999], [Ballard et
al., 2010], and [Peter and Seddon, 2010]. Using the geno-
types and a phenotypic outcome for a sample of patients, re-
searchers are able to identify relevant sections of the genome
that inform diagnosis. Recent studies have shown that the rate
of collection of genomic data is still increasing [Muir et al.,
2016]. Not only are sample sizes increasing, but dimension-
ality as well.

It is of great interest to perform whole genome analyses
(WGA) in order to determine the causal single nucleotide
polymorphisms (SNPs) for a particular outcome without
manually subsampling the large genome. However, in many
experiments, researchers focus only on a small portion of the
genome [He and Lin, 2011], [Wu et al., 2010], and [Fan and
Lv, 2008]. This may be done to mitigate the effect of spurious
correlations between certain SNPs and the outcome.

We hypothesize that by considering block structures in the
Linkage Disequilibrium (LD) [Slatkin, 2008] matrix of the
data, we can return a significantly smaller set of significant
SNPs without a large drop in prediction accuracy. LD is a
property observed in genomics where adjacent SNPs take on
highly correlated values.

By penalizing blocks of SNPs rather than penalizing the
SNPs on a genome-wide scale, we can select blocks that
are predictive of the outcome, rather than individual SNPs.
Nonetheless, there is value in locating individual SNPs within
these blocks. We therefore need a model that can return SNPs
that are potentially causal to a phenotype but are not alone in
their block with respect to the outcome variable. Essentially,

if a block on average is not predictive of the outcome, no SNP
within the block should be selected.

Our main contribution is a two-step procedure in which we
first determine the blocks in the LD matrix, then regularize
an SVM model based on these blocks. Unlike some previous
works like [Kim and Xing, 2012] and [Zhang et al., 2012] in
this area, we also show that block regularization is useful in
the genomic context when combined with a max-margin clas-
sifier. We observe that despite a slightly larger set of SNPs
being returned in the block-regularized case, the percentage
of SNPs that are significant are better than or equal to the
L1-regularized models.

2 Related works
The objective of reducing the false discovery rate among
SNPs has long been of interest. Many early methods like [He
and Lin, 2011], [Wu et al., 2010] and [Fan and Lv, 2008] use
prior knowledge to screen variables before being used in a
regression-based experiment. This is often highly subjective,
and causes issues in reproducing these results [Abad-Grau et
al., 2012].

To return a sparse group of features, recent studies like
[Waldmann et al., 2013] and [Papachristou et al., 2016] have
employed some variant of LASSO and elastic-net [Zou and
Hastie, 2005] regularization. While these are able to signifi-
cantly reduce the number of features returned, this model for-
mulation still doesn’t consider groups of correlated variables.

Finally, to address this issue, studies like [Kim and Xing,
2012] and [Zhang et al., 2012] have considered penalizing
groups of variables jointly. These methods employ prior
knowledge to determine groups of related SNPs and apply
some form of the group-LASSO to a least-squares regression
model.

We propose several extensions to this line of thinking.
First, we isolate the problems of achieving low classification
error, and selecting features that are highly significant, in or-
der to focus on the latter. We explore a variety of penalty
terms including a group-LASSO [Jacob et al., 2009]. We
also propose an SVM [Cortes and Vapnik, 1995] formulation
with each regularization scheme and explain briefly how this
can be optimized. Finally, we detail an algorithm to identify
groups of correlated features as input to our regularization
schemes.



3 Methods
We motivate our procedure with the following goal. While
L1-regularized models provide sparse solutions, they do not
adequately deal with block covariate structure in the data.
More specifically, we would not only like to identify relevant
SNPs, but blocks of relevant SNPs. Rather than pick relevant
SNPs across the entire feature space, it might be of interest to
first treat each block as a single unit. Once we identify these
blocks, we want to then identify those SNPs within the block
that correlate most with a given phenotype.

We divide our procedure into two parts: block inference,
and block regularization. We first approximate the number,
and location of blocks using linkage-disequilibrium (LD).
Once we have our blocks of correlated SNPs, we can define
an objective that enforces sparsity both on the block level and
on the individual SNP level.

Let X be the n × d data matrix where Xi,j ∈ {0, 1, 2}.
Let Y be an n× 1 vector where Yi ∈ {0, 1} or Yi ∈ {−1, 1}
for classification tasks. In our experiments, we consider the
least-squares regression (1) and the SVM (3) settings. We
propose the usage of a max-margin classifier as it has been
proven that SVMs converge to a separating hyperplane that is
more robust to noise [Xu et al., 2009].

θ = arg min
θ
λ||θ||1 + ||Y −Xθ||22 (1)

θ = arg min
θ

n∑
i=1

1− yi

 d∑
j=1

Xi,jθj


+

(2)

s.t.||θ||1 ≤ s (3)
To determine groups of contiguous SNPs, we first assume

that the d× d linkage disequilibrium matrix Σ exhibits block
structure. That is:

Σi,j =

{
ρk if i, j ∈ Gk
ε otherwise

(4)

Where ρk is the linkage disequilibrium between every pair
of SNPs i, j : i 6= j which are in the same block Gk. If
Xi ∈ Gk, Xj ∈ Gk′ : k 6= k′, then we assume the linkage
disequilibrium is some small quantity ε.

3.1 Block inference
We employ a constrained version of the reverse-delete min-
imum spanning tree algorithm (Algorithm 1) to identify l
groups in the data. We simply compute pairwise linage-
disequilibrium for all adjacent SNPs, then determine groups
such that the total across-group linkage-disequilibrium is
minimized as shown in (5).

min

d∑
i=1

d∑
j=1

{
LD(si, sj) if Group(i) 6= Group(j)

0 otherwise
(5)

We also don’t need to hard-code a value for l, the number
of groups. We instead maintain the percentage increase in
the minimum linkage disequilibrium as we add iteratively add
more groups. Once this value drops below a threshold τ , we
stop adding groups.

Algorithm 1 Constrained reverse-delete clustering

Input: data Xn×d, number of groups l
Initialize ∀i ∈ {1, 2, . . . , l}, ci = 0.
Initialize v = {0}d−1
Initialize w = ∅
for i = 1 to d− 1 do
vi ← LD(X:,i, X:,i+1)

end for
Sort v in ascending order
Let ω be the sorted indices of v
Let m be the median value in v
Let γ be |v1−m|m
i← 1
while γ < τ and i < d do
w ← w ∪ {ωi}
i← i+ 1
γ ← |vi−m|

m
end while
l← i
w ← w ∪ {0, d}
Sort w in ascending order
Let α = 1
for i = 1 to l do

for j = wi to wi+1 do
cj ← α

end for
α← α+ 1

end for

3.2 Block regularization

Now that we have grouped SNPs into blocks of high linkage-
disequilibirum, we can enforce our objectives – block-level
and SNP-level sparsity – by penalizing each block indepen-
dently, then adding an overall sparsity constraint. We begin
by adding a separate regularization term for each block using
block regularization [Jacob et al., 2009]:

θ = arg min
θ={θ(1),...,θ(l)}

R(θ) + L(X, θ) (6)

R(θ) = λ

l∑
k=1

√
nk||θ(k)||22 (7)

nk = |Gk| (8)

Where L(X, θ) is either a least squares or SVM objective.
We notice that while sparsity within each group is enforced,
overall sparsity is not. If there is a case where the number
of groups is very high, (6) might devolve into a simple L2-
regularization. We therefore propose an additional constraint
similar to [Vincent and Hansen, 2014] on the overall θ (9).



R(θ) = (1− α)λ

l∑
k=1

√
nk||θ(k)||22 + αλ||θ||1 (9)

= (1− α)λ

l∑
k=1

√
nk||θ(k)||22 + αλ

l∑
k=1

||θ(k)||1 (10)

= λ

l∑
k=1

(
(1− α)

√
nk||θ(k)||22 + α||θ(k)||1

)
(11)

We use α to ensure that the combination of the block-level
and the SNP-level regularization terms is convex. We can
then rewrite R(θ) as (11), allowing us to use the elastic net
argument [Zou and Hastie, 2005] to state that each term in
the summation is convex.

Block-wise objective
Using our values for R(θ) and L(X, θ), we notice that since
R(θ) is convex, we can use any L(X, θ) that is convex. We
can perform a block-wise gradient descent by writing our ob-
jective function as the sum of the losses within each block:

θ(j) = arg min
θ(j)

1

2n
L(j)(X(j), θ(j)) +R(θ(j)) (12)

R(θ(j)) = λ
(

(1− α)
√
nj ||θ(j)||22 + α||θ(j)||1

)
(13)

We use the same methodology as [Vincent and Hansen,
2014] to derive the block-specific loss functions:

L(j)(X(j), θ(j)) (14)

=

{
||r−j −X(j)θ(j)||22 Sq Loss∑n
i=1

[
1− yir−j − yiX(j)

i θ(j)
]
+

SVM (15)

r−j =

{
Y −

∑
k 6=j X

(k)θ(k) Sq Loss∑
k 6=j X

(k)
i θ(k) SVM

(16)

For sake of brevity, we refer the reader to [Vincent and
Hansen, 2014] for proof of convergence. Although they only
detail the least squares case, the SVM objective is also convex
[Cortes and Vapnik, 1995] so the same convergence proper-
ties hold.

4 Experiments
As our goal is to return a small set of causal SNPs, we
present comparisons with only L1-regularized models since
L2-regularized models are known to return less sparse sets of
features. The three regularization schemes we consider are
L1, unconstrained block regularization (UBR) (7), and block
regularization (BR) (9). Table 1 is a complete list of models
we consider. Since we are focused more on feature selection
than validation accuracy, we tune each model until maximum
testing accuracy before reporting our summary statistics. We
compare the proportion of all significant SNPs returned by
each algorithm and the number of non-zero weight values
from the runs with highest accuracy. We apply Bonferroni

Table 1: Legend name to model lookup

Legend Model
BRLog Logistic regression with BR

UBRLog Logistic regression with UBR
L1Log Logistic regression with L1

BRSVM SVM with BR
UBRSVM SVM with UBR

L1SVM SVM with L1

correction [Dunn, 1958] to our t-tests to account for multiple
comparisons.

We use the program ms [Hudson, 2002] to generate geno-
types that closely resemble human biology. We use the same
procedure as [Kim and Xing, 2012] but with ∼ 20000 hap-
lotypes or ∼ 10000 individuals, and ∼ 8000 SNPs. We
choose m : 1 ≤ m ≤ |Ĝk| SNPs from each Ĝk where
{Ĝ1, Ĝ2, . . . , Ĝk′} ⊂ {G1, G2, . . . , Gk}. These SNPs are
combined linearly, then thresholded to generate a simulated
phenotype. We also vary the recombination rate ρ between
every pair of SNPs such that ρ ∈ {2×10−i : 6 ≤ i ≤ 8}. The
higher the recombination rate, the weaker the block structure.
As an additional source of noise, we randomly flip the la-
bels of 10% of our data, bounding the maximum test accuracy
achievable.

5 Results
In Figure 1 we see the ROC curves for our three settings.
The data in Figure 1a has the highest level of linkage-
disequilibrium and we see that the block-regularized SVM
(BRSVM) performs best by a significant margin, followed by
the L1 regularized SVM (L1SVM). The other models per-
form similarly. When the linkage-disequilibrium decreases
(Figure 1b), we notice that the BRSVM and L1SVM still
perform well, but the other models are catching up. Finally,
in Figure 1c where the linkage-disequilibrium is the lowest,
thereby removing most of the block covariate structure in the
data, the models mostly perform the same, but it is important
to note that the BRSVM still performs on par with the rest.

We explore these results further in Table 2. We look specif-
ically at the medium recombination rate setting in particular
because the blocks are not as distinct as the low recombina-
tion rate setting, but are still present. The test accuracy for
the BRSVM model is the highest by a noticeable margin. As
we see in the ROC curves, the L1SVM is close behind with
a test accuracy of 0.86. The unconstrained block-regularized
SVM model is not too far behind with an accuracy of 0.84.
We also notice that the BRLog model performs the worst in
terms of test error, despite its loss converging to a stable min-
imum, while the UBRLog model performs better despite the
larger number of features returned. We observe that the SVM
models perform better than their counterparts in the cases of
L1 and BR.

In terms of non-zero features returned, the L1 models re-
turn the fewest, followed by the BR, then the UBR model.
This is due to a large number of groups being detected by Al-
gorithm 1. This has no effect on the L1 model, but greatly
weakens the regularization effect on the UBR models.
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Figure 1: ROC curves

It is important to note that while the number of non-zero
features returned by BRSVM is higher than the L1SVM, the
percentage of significant SNPs is higher. Additionally, the
BRSVM returns a smaller set of relevant features than the
BRLog model, but has much higher test accuracy.

Table 2: Medium recombination rate

Model Test accuracy Sig. SNPs Non-zero θs
BRLog 0.8110 0.714 42

UBRLog 0.8400 0.970 67
L1Log 0.8225 1.000 24

BRSVM 0.8710 1.000 40
UBRSVM 0.8155 0.800 85

L1SVM 0.8575 0.892 28

We continue the comparison between L1SVM and
BRSVM in Figures 2 & 3. Each location along the x-axis
represents each SNP we consider. The height of the point at
each point represents the negative logarithm of the p-value.
Blue circles represent returned SNPs that were significant,
red diamonds represent returned SNPs that were insignificant.
We see that the svmL1, which is the closest in terms of test
accuracy to the svmBlock, has returned many more insignifi-
cant SNPs. This is important to note because despite return-
ing more SNPs overall, the block-regularized model returns a
lower number of insignificant SNPs than the L1-regularized
model.

6 Concluding remarks
We have shown empirically that BRSVM exhibits superior
performance in cases of block-covariate structure in the data.
While the number of returned SNPs by the block-regularized
models is higher, the percentage of significant SNPs is very
high in the case of the SVM model. This is important be-
cause we are able to identify a larger number of causal SNPs
that we might have missed out using a regularization scheme
that doesn’t consider linkage-disequilibirum. Even though
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Figure 2: Manhattan plot for block-regularized SVM model
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Figure 3: Manhattan plot for L1-regularized SVM model

each of the regularization schemes yield similar results in
the case of very weak block-covariate structure, our proposed
BRSVM model still performs well, implying that it can be
used in settings of both low and high recombination rates.
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