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Mixture models are versatile tools that are used extensively in many fields, including operations, marketing,
and econometrics. The main challenge in estimating mixture models is that the mixing distribution is often
unknown and imposing apriori parametric assumptions can lead to model misspecification issues. In this
paper, we propose a new methodology for nonparametric estimation of the mixing distribution of a mixture
of logit models. We formulate the likelihood-based estimation problem as a constrained convex program
and apply the conditional gradient (a.k.a. Frank-Wolfe) algorithm to solve this convex program. We show
that our method iteratively generates the support of the mixing distribution and the mixing proportions.
Theoretically, we establish sublinear convergence rate of our estimator and characterize the structure of the
recovered mixing distribution. Empirically, we test our approach on real-world datasets. We show that it
outperforms the standard expectation-maximization (EM) benchmark on speed (16× faster), in-sample fit
(up to 24% reduction in the log-likelihood loss), and predictive (average 27% reduction in standard error
metrics) and decision accuracies (extracts around 23% more revenue). On synthetic data, we show that our
estimator is robust to different ground-truth mixing distributions and can also account for endogeneity.
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1. Introduction
Mixture models are used for modeling a wide-range of phenomena in many fields. Within operations,
they have been used to model customer demand, which changes in response to the changes a firm
makes to its product offerings. Predicting these changes allows firms to optimize their product and
price offerings, such as discontinuing low demand products or enforcing price changes to shift demand
to specific products. Demand predictions also serve as key inputs to inventory control and price
optimization models that are used in retail operations and revenue management (RM) systems.
A typical prediction problem involves fitting a mixture model to historical sales transactions and
inventory data. The most popular model that is fit is the mixture of multinomial logit (MNL) models,
also known simply as the mixture of logit models. This model has received considerable attention in
the literature and has also been successfully applied in practice. In addition, it has been shown to
approximate a wide class of mixtures (McFadden and Train 2000).

Because of its significance for demand modeling, we focus on the problem of estimating the mixing
distribution of a mixture of logit models, from sales transaction and inventory data. The main
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challenge in this problem is that the structure of the mixing distribution is not known in practice. A
common work-around is to assume that the mixing distribution comes from a pre-specified parametric
family, such as the normal or the log-normal distribution, and then estimate the parameters via
maximum likelihood estimation (Train 2009). This approach is reasonable when there is some prior
knowledge about the structure of the underlying mixing distribution. But when no such knowledge
exists, as often happens in practice, the ground-truth mixing distribution may very well not conform
to the imposed parametric form. This leads to model misspecification, which can result in biased
parameter estimates (Train 2008) or low goodness-of-fit measures (Fox et al. 2011).

To avoid model misspecification, we take a nonparametric approach, in which we search for the best
fitting mixing distribution from the class of all possible mixing distributions. The challenge with this
approach is a computational one. The class of all possible mixing distributions lacks sufficient structure
to allow for tractable estimation methods. One approach in the literature has been to approximate the
class of all possible mixing distributions with another (large) class, and then search for the best fitting
mixing distribution in that approximate space. For instance, Train (2008) takes this approach, in
which the space of all mixing distributions is approximated with the class of finite mixtures of normal
distributions or the class of discrete distributions with a large support size. Such approximations
allow the application of standard optimization techniques, such as the expectation-maximization
(EM) framework. But the resulting optimization problems are still non-convex and become difficult to
solve, running into numerical issues, as the number of parameters increases.

Our main contribution in this paper is to reformulate the nonparametric mixture estimation problem
as a constrained convex program, without resorting to any approximations to the space of all possible
mixing distributions. We pose the mixture estimation problem as the problem of searching for the
distribution that minimizes a loss function from among the class of all possible mixing distributions.
The standard log-likelihood loss (which results in the maximum likelihood estimator) and squared
loss are two example loss functions. Then, we use the insight that the mixing distribution affects the
objective function only through the choice probabilities it predicts for the observed choices in the
data; we call the vector of these choice probabilities, the data mixture likelihood vector. Now, instead
of optimizing over the space of mixing distributions, the mixture estimation problem can be solved
by directly optimizing over the space of all possible data mixture likelihood vectors. The constraints
ensure that the mixture likelihood vector is indeed consistent with a valid mixing distribution. We
show that for the standard loss functions used in the literature, the objective function is convex in
the mixture likelihood vector. Further, although not apriori clear, we show that the constraint set is
also convex. Together, these two properties result in a constrained convex program formulation for
the mixture estimation problem. We emphasize here that although we obtain a convex program, the
constraint space lacks an efficient description. Therefore, the resulting program, though convex, may
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be theoretically hard to solve. Nevertheless, there is vast literature on solving such convex programs,

which we leverage to obtain scalable and numerically stable methods that are efficient for special

cases and result in good approximations more generally.

A more immediate concern is that simply solving the above program is not sufficient because the

optimal solution will be expressed as the mixture likelihood vector and not as the mixing distribution.

Backing out the underlying mixing distribution from the mixture likelihood vector may again be a

computationally intensive exercise. To counter this issue, we apply the conditional gradient (a.k.a.

Frank-Wolfe) algorithm to solve the above convex program. We show that the special structure of the

conditional gradient (CG) algorithm allows it to simultaneously perform both the tasks of optimizing

over the predicted choice probabilities and recovering the best fitting mixing distribution. The CG

algorithm is an iterative first-order method for constrained convex optimization. We show that when

applied to our method, each iteration of the CG algorithm yields a single mixture component. The

CG algorithm has seen an impressive revival in the machine learning literature recently because of its

favorable properties compared to standard projected/proximal gradient methods, such as efficient

handling of complex constraint sets. The vast literature on the CG algorithm in the machine learning

area confers two key advantages to our estimation technique: (a) availability of precise convergence

guarantees (Lacoste-Julien and Jaggi 2015) and (b) scalability to large-scale and high-dimensional

settings (Wang et al. 2016).

Summary of key results. Our work makes the following contributions:

1. Novel mixture estimation methodology. Our estimator is (a) general-purpose: can be applied with

little to no customization for a broad class of loss functions; (b) fast: order of magnitude faster than the

benchmark expectation-maximization (EM) algorithm; and (c) nonparametric: makes no assumption

on the mixing distribution and estimates customer types in the population in a data-driven fashion.

2. Analytical results. We obtain two key theoretical results:

(i) We provide a sublinear convergence guarantee, i.e. O(1/k) after k iterations, for our CG-based

estimator, for both the log-likelihood and squared loss functions. Refer to Theorem 1 and Section 5.1

for the details.

(ii) We characterize the structure of the mixing distribution recovered by our estimator. Our

method recovers two types of mixture components: what we call, (a) non-boundary and (b) boundary

types. A non-boundary type is described by a standard logit model with a parameter vector ω. The

boundary types, on the other hand, are limiting logit models that result from unbounded solutions

in which the parameter vector ω is pushed to infinity. We show that each boundary type can be

described by two parameters (ω0,θ). The parameter vector θ induces a (weak) preference order over

the set of products and determines a consideration set the customer forms, when given an offer-set.
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The parameter vector ω0 then determines the logit choice probabilities from within the consideration
set. Refer to Section 5.2 for the details.

For the case of a single offer-set (such as market share data), we also identify conditions under
which our estimator recovers boundary types, and characterize the corresponding consideration sets
of the recovered types. Our conditions depend on the geometry of the observed product features, viz.
the (convex) polytope formed by the convex hull of the product feature vectors; see Section 5.3.1 for
the details. In addition, when some features are binary, we show that our estimator recovers boundary
types in each iteration, with the consideration sets reflecting strong non-compensatory preferences in
the population, refer to Section 5.3.2 for more details.

3. Empirical results. We conducted three numerical studies to validate our methodology:
(a) Using synthetic data, we show that our estimator is robust to several complex ground-truth

mixing distributions and consistently recovers a good approximation to the underlying distribution.
Note that this is despite the fact that our estimator has no knowledge of the true mixing distribution.
In particular, its performance is significantly better than a standard benchmark method imposing
a parametric assumption on the mixing distribution, and highlights the potential impact of model
misspecification in practice.

(b) On the SUSHI Preference Dataset (Kamishima et al. 2005), where customers rank different
sushi varieties according to their preference, we show that our method achieves superior in-sample
fit compared to fitting a latent class MNL (LC-MNL) model using the EM algorithm (Bhat 1997),
for both the log-likelihood (24% better) and squared loss (58% better), with 16× speedup in the
estimation time. The CG algorithm iteratively adds customer types that explain the observed choice
data to the mixing distribution, which results in a much better fit as compared to the EM algorithm
that updates all customer types together in each iteration. Our approach also achieves better predictive
accuracy than EM, with an average 27% and 16% reduction in the RMSE (root mean square error)
and MAPE (mean absolute percentage error) metrics for predicting market shares on new assortments.
In solving the assortment decision, we show that our method can extract upto 23% more revenue
from the population than the EM benchmark.

(c) On real-world sales transaction data from the IRI Academic Dataset (Bronnenberg et al.
2008), we show that our method achieves upto 8% (resp. 7%) and 7% (resp. 5%) reduction, respectively,
in the in-sample and out-of-sample log-likelihood loss (resp. squared loss), compared to the EM
benchmark. In particular, we outperformed EM-based estimation in all 5 product categories that we
considered.

2. Relevant literature
Our work has connections to two broad areas:



Jagabathula, Subramanian, and Venkataraman: Nonparametric estimation of mixing distributions
Article submitted to Management Science; manuscript no. 5

Nonparametric maximum likelihood estimation (NPMLE). Our estimation approach gen-
eralizes the NPMLE techniques—our method is applicable for any convex loss function including
the standard log-likelihood loss—which have a long and rich history in classical statistics (Robbins
1950, Kiefer and Wolfowitz 1956). These techniques search for a distribution that maximizes the
likelihood function from a large class of mixing distributions. In the context of studying properties of
the maximum likelihood estimator (such as existence, uniqueness, support size, etc.) for the mixing
distribution via the geometric structure of the constraint set, Lindsay (1983) shows that when the
mixing distribution is unrestricted, the NPMLE can be formulated as a convex program. However,
such a formulation is computationally difficult to solve when the underlying parameter space is high
dimensional. To address this issue, existing work has taken two approaches. The first approach reduces
the search space to a large (but finite) number of mixture components, and uses the EM algorithm
for estimation (Laird 1978). Though now the estimation problem is finite-dimensional, convexity is
lost and standard issues related to non-convexity and finite mixture models become a significant
obstacle (McLachlan and Peel 2000). The second approach retains convexity but gains tractability
through a finite-dimensional convex approximation where the support of the mixing distribution is
assumed to be finite and pre-specified (such as a uniform grid) and only the mixing weights need
to be estimated. Fox et al. (2011) specialize this approach to estimating a mixture of logit models.
However, it is unclear how to choose the support. When the dimensionality of the parameter space is
small, Fox et al. demonstrate that a uniform grid is sufficient to reasonably capture the underlying
distribution, but this approach quickly becomes intractable for even moderately large parameter
dimensions.1 Consequently, existing techniques have usually focused on simple models with univariate
or low-dimensional (bi- and tri-variate) mixing distributions (Bohning et al. 1992, Jiang and Zhang
2009, Feng and Dicker 2018) to retain tractability.

In the context of the above, we avoid the issues resulting from the non-convex formulation by
retaining convexity, but at the same time we do not need access to a pre-specified support. We
leverage the conditional gradient algorithm to directly solve the seemingly intractable convex program,
which iteratively generates the support of the mixing distribution by searching over the underlying
parameter space. This allows our method to scale to higher-dimensional settings, 5 in our SUSHI case
study and 11 in the IRI case study; see Sections 7.1 and 7.2.

Conditional gradient algorithms. The conditional gradient algorithm is one of the earliest
methods (Frank and Wolfe 1956) for constrained convex optimization, and has recently seen an
impressive revival for solving large-scale problems with structured constraint sets (see Clarkson 2010
and Jaggi 2011 for excellent overviews). The algorithm has been used in diverse domains including

1 Indeed, their numerical experiments consider only bivariate mixing distributions.



Jagabathula, Subramanian, and Venkataraman: Nonparametric estimation of mixing distributions
6 Article submitted to Management Science; manuscript no.

computer vision (Joulin et al. 2014), submodular function optimization (Bach 2013), collaborative
filtering (Jaggi and Sulovsk 2010), as well as inference in graphical models (Krishnan et al. 2015).
In addition, numerous related variants of the algorithm have been proposed such as solving non-
linear subproblems to increase sparsity (Zhang 2003) and incorporating regularization to improve
predictive performance (Harchaoui et al. 2015). In terms of theoretical performance, Jaggi (2013)
gave a convergence analysis that guarantees an error of at most O(1/t) (sublinear convergence) after
t iterations for any compact convex constraint set. Recently, Lacoste-Julien and Jaggi (2015) proved
that many versions of the classical Frank-Wolfe algorithm enjoy global linear convergence for any
strongly convex function optimized over a polytope domain.

Our main contribution is leveraging the conditional gradient algorithm for estimating the mixing
distribution, which also allows us to provide convergence guarantees for our estimator. For the squared
loss function, the sublinear convergence rate of O(1/k) after k iterations follows from existing results.
But, for the log-likelihood loss, existing results don’t apply because the gradient blows up at the
boundary of the constraint region. We address this issue by showing that the iterates produced by
the fully corrective variant of the CG algorithm (the one that we implement) are strictly bounded
away from the boundary. We then adapt and extend existing arguments to establish the same O(1/k)
sublinear convergence guarantee, as for the squared loss. We also show that, under appropriate
structure in the observed product features, our estimator converges to the optimal solution in a finite
number of iterations (see Section 5.3).

3. Problem Setup and Formulation
We consider a universe [n] def= {1,2, . . . , n} of n products, which customers interact with over T ≥ 1
discrete time periods.2 We assume access to aggregate sales data for these n products in each time
period.3 In each time period t∈ [T ], the firm offers a subset St ⊆ [n] of products to the customers and
collects sales counts for each of the products. We let Njt denote the number of times product j was
purchased in period t, Nt

def=
∑
j∈St

Njt denote the total number sales in period t, and N
def=
∑
t∈[T ]Nt

denote the total number of sales over all the time periods. We suppose that we observe at least
one sale in each period t, so that Nt > 0 for all periods t ∈ [T ]; if there was no observed sale in
a time period, then we assume that it was already dropped from the observation periods. Let
Data def= {(Njt : j ∈ St) | t∈ [T ]} denote all the observations collected over the T discrete time periods.
We assume that product j ∈ St is represented by a D-dimensional feature vector zjt in some feature
space Z ⊆RD. Example features include price, brand, and color. Product features could vary over

2 We use the notation [m] def= {1, 2, . . . , m} for any positive integer m in the rest of the paper.
3 Our method requires some modifications in order to be applied to individual-level panel data. We discuss these
modifications in Appendix E.
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time; for instance, product prices may vary because of promotions, discounts, etc. In practice, these
data are often available to firms in the form of purchase transactions, which provide sales information,
and inventory data, which provide offer-set information.

We assume that each customer makes choices according to an MNL (aka logit) model, which
specifies that a customer purchases product j from offer-set S with probability

fj,S(ω) = exp (ω>zjS)∑
`∈S exp (ω>z`S) , (1)

where z`S is the feature vector of product ` when offered as part of offer-set S and ω is the parameter
or “taste” vector. This taste vector specifies the “value” that a customer places on each of the product
features in deciding which product to purchase. Customers often have heterogeneous preferences
over product features. To capture this heterogeneity, we assume that the population of customers is
described by a mixture of MNL models, where in each choice instance, a customer samples a vector
ω according to some distribution Q (over the parameter space RD) and then makes choices according
to the MNL model with parameter vector ω.

Our goal is to estimate the best fitting mixing distribution to the collection Data of sales observations,
from the class of all possible mixing distributions Q def= {Q : Q is a distribution over RD}. The fit to
the data is measured via a loss function that quantifies the mismatch between the observed sales
fractions in Data and those predicted by the mixture of logit model. In order to state the problem
formally, we need to introduce additional notation. For each (product, offer-set) pair, define the
mapping gjt : Q→ [0,1] as

gjt(Q) =
∫
fjt(ω) dQ(ω),

where for brevity of notation, we let fjt(ω) denote fj,St(ω). In other words, gjt(Q) is the probability
of choosing product j from offer-set St under the mixing distribution Q. Let M def= |S1|+ · · ·+ |ST |
and g : Q→ [0,1]M denote the vector-valued mapping, defined as g(Q) = (gjt(Q) : t∈ [T ], j ∈ St). We
call g(Q) the data mixture likelihood vector or simply the mixture likelihood vector, under mixing
distribution Q. We let G = {g(Q) : Q∈Q} denote the set of all mixture likelihood vectors.

Given the above, our goal is to solve the following problem:

min
Q∈Q

loss(g(Q); Data), (Mixture Estimation)

where loss(·; Data) : G → R≥0 ∪ {+∞} is a non-negative convex function. We make the standard
assumption that loss(·) is continuously differentiable on the relative interior of G. Two example
functions include:
• Negative log-likelihood (NLL) Loss: This loss function is by far the most widely used in

practice (Train 2008):

NLL(g(Q); Data) =− 1
N

T∑
t=1

∑
j∈St

Njt log (gjt(Q)) .
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• Squared (SQ) Loss: This loss function was employed by Fox et al. (2011):

SQ(g(Q); Data) = 1
2 ·N

T∑
t=1

Nt ·
∑
j∈St

(gjt(Q)− yjt)2
.

where yjt
def= Njt/Nt denotes the fraction of sales for product j in offer-set St.

We first describe traditional approaches to solving the Mixture Estimation problem, and their

limitations, to motivate the need for our approach.

3.1. Traditional approaches to mixture estimation

Directly solving the Mixture Estimation problem is challenging due to the complexity of searching

over all possible mixing distributions. Consequently, traditional approaches assume that the mixing

distribution belongs to a family Q(Θ) of distributions parametrized via parameter space Θ, where

Q(Θ) def= {Qθ : θ ∈Θ} and Qθ is the mixing distribution corresponding to the parameter vector θ ∈Θ.

The best fitting distribution is then obtained by solving the following likelihood problem:4

min
θ∈Θ

− 1
N

T∑
t=1

∑
j∈St

Njt log
(∫

fjt(ω) dQθ(ω)
)
. (2)

Different assumptions for the family Q(Θ) result in different estimation techniques.

The most common assumption is that the mixing distribution follows a multivariate normal

distribution N (µ,Σ), parametrized by θ = (µ,Σ), where µ is the mean and Σ is the variance-

covariance matrix of the distribution. The resulting model is referred to as the random parameters

logit (RPL) model (Train 2009), and the corresponding likelihood problem is given by

min
µ,Σ
− 1
N

T∑
t=1

∑
j∈St

Njt log
(∫

fjt(ω) · 1√
(2π)D |Σ|

exp
(
−1

2(ω−µ)>Σ−1(ω−µ)
)
dω

)
. (3)

The integral in the above problem is often approximated through a Monte Carlo simulation.

The other common assumption is that the mixing distribution has a finite support of size K. The

distribution is then parametrized by θ = (α1, . . . , αK ,ω1, . . . ,ωK), where (ω1, . . . ,ωK) denotes the

support of the distribution and (α1, . . . , αK) denote the corresponding mixture proportions with∑
k∈[K]αk = 1 and αk ≥ 0 for all k ∈ [K]. The resulting model is referred to as the latent class MNL

(LC-MNL) model (Bhat 1997), and the corresponding likelihood problem is given by

min
α1,α2,...,αK
ω1,ω2,...,ωK

− 1
N

T∑
t=1

∑
j∈St

Njt log
(

K∑
k=1

αkfjt(ωk)
)

subject to
∑
k∈[K]

αk = 1, αk ≥ 0 ∀ k ∈ [K]. (4)

Although commonly used, these traditional approaches suffer from two key limitations:

4 The negative log-likelihood loss is the typical choice in existing techniques.
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• Model misspecification: The most significant issue with traditional approaches is model misspeci-

fication, which occurs when the ground-truth mixing distribution is not contained in the search space

Q(Θ). In practice, such misspecification is common because the selection of the search space Q(Θ) is

often driven by tractability considerations as opposed to knowledge of the structure of the ground-truth

mixing distribution. Model misspecification can result in biased parameter estimates (Train 2008)

and low goodness-of-fit measures (Fox et al. 2011).

• Computational issues: Another practical issue is that, even if the model is not misspecified, the

resulting likelihood problems are non-convex and therefore hard to solve in general.

3.2. Our approach: mixture estimation by solving a convex program

Our approach is designed to address the challenges described above. We avoid the model misspeci-

fication issue as we directly search over all possible mixing distributions, instead of restricting our

search to specific parametric families.5 However, this can introduce computational concerns, given the

complexity of the search space Q. To address the computational issue, we formulate the Mixture

Estimation problem as a constrained convex program, as described next. This formulation allows us

to tap into the vast existing literature on solving convex programs efficiently.

We now describe the steps in our formulation. We first observe that the objective function only

depends on Q through the corresponding mixture likelihood vector g(Q). Therefore, instead of

searching over the mixing distributions, we directly search over the mixture likelihood vectors,

obtaining the following equivalence:

min
Q∈Q

loss(g(Q)) ≡ min
g∈G

loss(g), (5)

where we have dropped the explicit dependence of loss on Data for simplicity of notation. Recall that

G = {g(Q) : Q∈Q} is the set of all possible mixture likelihood vectors.

With the above equivalence, our ability to solve the Mixture Estimation problem depends

on our ability to describe the constraint set G. We show next that this constraint set can indeed

be expressed as a convex set. For that, analogous to the mixture likelihood vector earlier, define

the atomic likelihood vector f(ω) def= (fjt(ω) : t ∈ [T ], j ∈ St). We let P = {f(ω) : ω ∈RD} denote

the set of all possible atomic likelihood vectors, and P denote its closure.6 Now, it is clear that if

Q∈Q is a discrete distribution with finite support ω1,ω2, . . . ,ωK and corresponding mixing weights

5 We note that searching over the space of all possible mixing distributions can lead to potential overfit issues, which
we discuss in Section 4.1.
6 For technical reasons, we need to consider the closure of the set P, which also contains all limit points of convergent
sequences in the set P.



Jagabathula, Subramanian, and Venkataraman: Nonparametric estimation of mixing distributions
10 Article submitted to Management Science; manuscript no.

α1, α2, . . . , αK , then g(Q) =
∑K
k=1αkf(ωk), and so g(Q) belongs to the convex hull, conv(P), of

vectors in P , defined as

conv(P) =

∑
f∈F

αf f : F ⊂P is finite and
∑
f∈F

αf = 1, αf ≥ 0 ∀f ∈F

 .
It can be verified that conv(P) is a convex set in RM . In other words, for any discrete mixing

distribution Q with finite support, we can express g(Q) as a convex combination of atomic likelihood
vectors {f}f∈F for some finite subset F ⊂P. More generally, it can be shown (Lindsay 1983) that
G = conv(P), i.e. the set of all possible mixture likelihood vectors coincides with the convex hull of all
atomic likelihood vectors. This fact, combined with the equivalence in (5), implies that instead of
solving Mixture Estimation, we can equivalently solve the following problem:

min
g∈conv(P)

loss(g) (Convex Mixture)

We can show that the above is a constrained convex program (the proof is given in Appendix A.1):

Lemma 1. For any convex function loss(·), Convex Mixture is a convex program with a compact
constraint set in the Euclidean space.

So, our task now is to solve the Convex Mixture problem. However, solving it alone does not
provide the mixing distribution—it only provides the optimal mixture likelihood vector. We show
next that the conditional gradient algorithm is the ideal candidate to not only obtain the optimal
mixture likelihood vector, but also the optimal mixing distribution.

4. Conditional gradient algorithm for estimating the mixing distribution
We now apply the conditional gradient (hereafter CG) algorithm to solve the Convex Mixture
problem. The CG algorithm (Frank and Wolfe 1956, Jaggi 2013) is an iterative method for solving
constrained convex programs. It has seen an impressive revival in the machine learning literature
recently because of its favorable properties compared to standard projected/proximal gradient methods,
such as efficient handling of complex constraint sets. Appendix C provides an overview of the general
CG algorithm. Here, we describe how it applies to solving ming∈conv(P) loss(g).

The CG algorithm is an iterative first-order method that starts from an initial feasible solution, say
g(0) ∈ conv(P), and generates a sequence of feasible solutions g(1),g(2), . . . that converge to the optimal
solution. Letting ∇loss(·) denote the gradient of the loss function and 〈·, ·〉 the standard inner product
in the Euclidean space, the algorithm computes a descent direction d such that

〈
∇loss(g(k−1)),d

〉
< 0

in iteration k≥ 1 and takes a suitable step in that direction (see for instance, Nocedal and Wright
2006). The main distinction of the CG algorithm is that it always chooses feasible descent steps, where
by a feasible step we mean a step from the current solution towards the next solution such that the
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next solution remains feasible as long as the current is feasible. By contrast, other classical algorithms
may take infeasible steps, which are then projected back onto the feasible region after each step; such
projection steps are usually computationally expensive. To find a feasible step, the CG algorithm first
obtains a descent direction by optimizing a linear approximation of the convex loss function at the
current iterate g(k−1):

min
v∈conv(P)

loss(g(k−1)) +
〈
∇loss(g(k−1)),v−g(k−1)

〉
, (6)

where the objective function in the above subproblem describes a supporting hyperplane to the convex
loss function loss(·) at the current iterate g(k−1). The optimal solution, say, v∗, provides the optimal
direction d∗ = v∗−g(k−1). It can be shown that d∗ is a descent direction if g(k−1) is not already an
optimal solution to the Convex Mixture problem. The next solution g(k) is obtained by taking a
step α ∈ [0,1] in the direction of d∗, so that g(k) = g(k−1) +αd∗ = αv∗+ (1−α)g(k−1). Since v∗ and
g(k−1) both belong to conv(P) and conv(P) is convex, it follows that g(k) ∈ conv(P) for any α ∈ [0,1].

Solving the above subproblem is the most computationally challenging component in each iteration
of the CG algorithm. In our context, we have additional structure that we can exploit to solve
this subproblem. Specifically, the objective function is linear in the decision variable v. And, linear
functions always achieve optimal solutions at extreme points when optimized over a convex set. Our
constraint set conv(P) is the convex hull of all the atomic likelihood vectors in P . Therefore, the set
of extreme points of the constraint set is a subset of P . It thus follows that it is sufficient to search
over the set of all atomic likelihood vectors in P , resulting in the following optimization problem:

min
v∈P

〈
∇loss(g(k−1)),v−g(k−1)

〉
. (7)

Our ability to solve (7) efficiently depends on the structure of the set P. We discuss this aspect in
more detail in Section 4.1. For now, we suppose that we have access to an oracle that returns an
optimal solution, say, f (k), to (7) in each iteration k.

In summary, in each iteration, the CG algorithm finds a new customer type (or atomic likelihood
vector) f (k) ∈P and obtains the new solution g(k) = αf (k) + (1−α)g(k−1) by putting a probability
mass α on the new customer type f (k) and the remaining probability mass 1−α on the previous
solution g(k−1), for some α ∈ [0,1]. In other words, the CG algorithm is iteratively adding customer
types f (1),f (2), . . . to the support of the mixing distribution. This aspect of the CG algorithm makes
it most attractive for estimating mixing distributions. In particular, it has two implications: (a) by
maintaining the individual customer types and the step sizes, we can maintain the entire mixing
distribution along with the current solution g(k), in each iteration k (see below for details); and (b)
since each iteration adds (at most) one new customer type to the support, terminating the program at
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iteration K results in a distribution with at most K mixture components. We use the latter property
to control the complexity, as measured in terms of the number of mixture components, of the recovered
mixing distribution (see the discussion below on “Stopping conditions”).

We now discuss the choice of the step size α. The standard variant of the CG algorithm does
a line-search to compute the optimal step size that results in the maximum improvement in the
objective value. Instead, we use the “fully corrective” Frank-Wolfe (FCFW) variant (Shalev-Shwartz
et al. 2010) which after finding f (k) at iteration k, re-optimizes the loss function loss(g) over the
convex hull of the initial solution g(0) and the atomic likelihood vectors f (1),f (2), . . . ,f (k) found so far.
More precisely, the algorithm computes weights α(k) from the (k+ 1)-dimensional simplex ∆k that
minimize the loss function and obtains the next iterate g(k) := α

(k)
0 g(0) +

∑k
s=1α

(k)
s f (s). The weights

α(k) = (α(k)
0 , α

(k)
1 , α

(k)
2 , . . . , α

(k)
k ) represent the proportions of each of the mixture components. This

variant of the CG algorithm makes more progress in each iteration and is therefore most suited when
the subproblems in (7) are hard to solve. It also promotes sparser solutions (Jaggi 2013) containing
fewer mixture components. Algorithm 1 summarizes the entire procedure.

Algorithm 1 CG algorithm for estimating the mixing distribution
1: Initialize: k = 0; g(0) ∈P such that both loss(g(0)),∇loss(g(0)) are bounded, and α(0) = (1)
2: while stopping condition is not met do

3: k← k+ 1
4: Compute f (k) ∈ arg minv∈P

〈
∇loss(g(k−1)),v−g(k−1)〉 (support finding step)

5: Compute α(k) ∈ arg minα∈∆k
loss

(
α0g

(0) +
∑k
s=1αsf

(s)
)

(proportions update step)
6: Update g(k) := α

(k)
0 g(0) +

∑k
s=1α

(k)
s f (s)

7: end while

8: Output: mixture proportions α(k)
0 , α

(k)
1 , α

(k)
2 , . . . , α

(k)
k and customer types g(0),f (1),f (2), . . . ,f (k)

We discuss a few key features of the algorithm. First, the algorithm outputs both the support and
the mixture proportions of the mixing distribution, as desired. Second, the proportions update step
is also a constrained convex optimization problem, but over a much smaller domain compared to
conv(P). We show below that this step can be solved efficiently. Third, Algorithm 1 is agnostic to
the choice of the loss function loss (so long as it is convex and differentiable) and readily applies to
both the NLL and SQ loss functions. Finally, although not the focus in this work, standard errors
for the parameters of the recovered mixing distribution (or relevant summary statistics such as the
price elasticity) can be computed via bootstrapping, as is commonly done in the literature; see for
instance, Train (2008). Furthermore, as discussed in Section 2, for the negative log-likelihood loss, our
method reduces to classical nonparametric maximum likelihood estimation (NPMLE) of the mixing
distribution, and therefore inherits its statistical properties. For a detailed discussion on NPMLE, we
refer the reader to Lindsay (1995) and references therein.
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4.1. Implementation Details

Here, we discuss a few key implementation details for Algorithm 1.
Solving the support finding step. For each loss function introduced in Section 3, the support finding

step in iteration k can be written as (by plugging in the gradients and dropping constant terms):

NLL : min
ω∈RD

− 1
N

T∑
t=1

∑
j∈St

(
Njt

g(k−1)
jt

)
· exp (ω>zjt)∑

`∈St
exp (ω>z`t)

SQ : min
ω∈RD

1
N

T∑
t=1

∑
j∈St

(
Nt · g(k−1)

jt −Njt

)
· exp (ω>zjt)∑

`∈St
exp (ω>z`t)

(8)

The optimal solutions to the problems above may be unbounded. These unbounded solutions cor-
respond to the atomic likelihood vectors in P \P, as shown in Section 5.2. We solve the problems
in (8) approximately using a general-purpose non-linear program solver (Nocedal and Wright 2006).
Solving these optimization problems exactly is computationally hard because they are non-convex,
as shown in Appendix D. However, we only need to generate an improving solution, that is, find a
feasible descent direction (see description above equation 6), to ensure convergence of the algorithm.
In our numerical experiments, we found that the standard Broyden-Fletcher-Goldfarb-Shanno (BFGS)
method was sufficient to obtain improving solutions.

Solving the proportions update step. This step is itself a constrained convex program, so we use the
CG algorithm to solve it. Instead of the variant described above, we adopt the approach of Krishnan
et al. (2015) who recently proposed a modified Frank-Wolfe algorithm to approximately solve the
proportions update step. In contrast to the standard CG algorithm described above, this variant
performs two kinds of steps to update the support of the mixing distribution in each iteration: a
support finding step that finds a customer type to be added to the mixture and an “away” step (Guélat
and Marcotte 1986) that reduces probability mass (possibly to zero) from a customer type in the
existing mixing distribution. Moreover, the support finding step can be solved exactly by searching over
the k+ 1 extreme points of the (k+ 1)-dimensional simplex ∆k. The next iterate is then computed
based on which step—support finding step or away step—results in higher improvement in the objective
value (see Alg. 3 in Appendix B of Krishnan et al. 2015 for the details). The presence of away steps
means that we can (sometimes) ‘drop’ existing customer types from the mixing distribution, thereby
resulting in solutions with fewer number of mixture components.

Initialization. We can start with any g(0) ∈P as the initial solution such that the starting objective
loss(g(0)) and gradient ∇loss(g(0)) are bounded. Since we are fitting a mixture of logit models, a
natural choice is to fit an LC-MNL model with a “small” number of classes (or even a single class
MNL model) to the data and use that as the initialization. In particular, the MNL log-likelihood
objective is globally concave in the parameter ω and there exists efficient algorithms (Hunter 2004)
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for its estimation that converge quickly in practice. In our empirical case studies, we initialize by
fitting a 2-class LC-MNL model to the data.

Stopping conditions. We can use many stopping conditions to terminate the algorithm: (1) Jaggi
(2013) showed that if the subproblem can be solved optimally in each iteration, then we can compute
an upper bound on the “optimality gap” of the current solution g(k), i.e. loss(g(k))− loss(g∗) where
g∗ denotes the optimal solution to the Convex Mixture problem. In this case, we can choose
an arbitrarily small δ > 0 and choose to terminate the algorithm when loss(g(k)) − loss(g∗) ≤ δ.
However, this might result in overfitting—because of the presence of a large number of mixture
components—and consequently, perform poorly in out-of-sample predictions. (2) We can utilize
standard information-theoretic measures proposed in the mixture modeling literature (McLachlan
and Peel 2000) such as Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC)
etc. that capture model complexity as a function of the number of mixture components and prevent
overfitting. (3) Finally, a simple way to control for model complexity is to just limit the number of
iterations of the algorithm7 at some k =Kmax according to the maximum number of customer types
that we may be interested in finding. This ensures that the estimated mixture is composed of at most
Kmax types and we use this stopping condition in our empirical case studies.

5. Theoretical analysis of the estimator
In this section, we derive the convergence rate of our estimator and also theoretically characterize the
customer types recovered by our method.

5.1. Convergence rate of the estimator
To state our result on the convergence rate, we need the following notation. For each offer-set St,
let yt

def= (yjt)j∈St denote the vector of sales fractions for offer-set St. Let H(yt)
def= −

∑
j∈St

yjt log yjt
denote the entropy of the vector yt. As 0≤ yjt ≤ 1, H(yt)≥ 0 for all t∈ [T ].8 Moreover, let DKL(p‖q) def=
p log(p/q) + (1− p) log((1− p)/(1− q)) denote the relative entropy (aka KL-divergence) between p

and q for any 0≤ p, q≤ 1. It is a known fact that DKL(p‖q)≥ 0 for all 0≤ p, q≤ 1 and DKL(p‖q) = 0
if and only if p= q. Finally, let yt,min

def= min{yjt | j ∈ St s.t. yjt > 0} and ymin
def= min{yt,min | t∈ [T ]}.

Then, we can establish the following convergence guarantee:

Theorem 1 (Sublinear convergence). Let g∗ denote the optimal solution to the Convex
Mixture problem, and g(k) denote the kth iterate generated by Algorithm 1. Then, for the loss
functions defined in Section 3, it follows

SQ(g(k))− SQ(g∗)≤ 4
k+ 2 for all k≥ 1,

NLL(g(k))−NLL(g∗)≤ 4
ξ2

min · (k+κ) for all k≥ K̄ for some constant κ and index K̄,

7 Following the early stopping rule in machine learning literature, see for instance Yao et al. (2007) and Prechelt (2012).
8 We use the standard convention that 0 · log 0 = 0 when computing the entropy.
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where ξmin is the smallest ξ such that 0< ξ ≤ ymin and

min
1≤t≤T

Nt ·DKL(yt,min‖ξ)≤N ·NLL(g(0))−
T∑
t′=1

Nt′ ·H(yt′).

Such a ξmin always exists.

The result above establishes an O(1/k) convergence guarantee for our estimator for both loss functions,
assuming that the support finding step in Algorithm 1 can be solved optimally. The detailed proof
is given in Appendix A.2; here, we provide a proof sketch. Our proof builds on existing techniques
developed for establishing convergence rates of the CG algorithm. This is an active area of research
with different rates having been derived for different variants of the CG algorithm, under different
assumptions for the structures of the objective function and the constraint set (Jaggi 2013, Garber
and Hazan 2015, Lacoste-Julien and Jaggi 2015). The convergence guarantee for the SQ loss function,
in fact, follows directly from the existing result in Jaggi (2013), which shows that the CG algorithm
converges at an O(1/k) rate if the so-called curvature constant is bounded from above. If the domain
is bounded and the hessian of the objective function is bounded from above, then the curvature
constant is known to be bounded from above. In our case, the domain conv(P) is bounded (since any
vector f ∈ conv(P) has entries between 0 and 1). The hessian of the SQ loss is a diagonal matrix,
where each entry is bounded above by 1. Therefore, it follows that the curvature constant is bounded
from above, thus allowing us to establish the O(1/k) guarantee by directly invoking existing results.

The hessian of the NLL loss function, on the other hand, is not bounded from above. For simplicity,
suppose that Njt > 0 for all t∈ [T ] and any j ∈ St; our result also holds when some of the sales counts
are 0, see the discussion at the beginning of Appendix A.2.2. Then, it is easy to see that the hessian is
a diagonal matrix with the entry corresponding to (product, offer-set) pair (j,St) equal to Njt/(N ·g2

jt).
Since gjt can be arbitrarily close to 0 in the domain conv(P), the diagonal entries are not bounded
from above, and thus, existing results don’t directly apply. To address this issue, suppose that we can
establish a non-trivial lower bound, say, ξ∗ > 0, for the optimal solution g∗ so that g∗jt ≥ ξ∗ > 0 for all
t∈ [T ] and all j ∈ St. It then follows that the hessian of the NLL loss is bounded from above when the
domain is restricted to D̃ def=

{
g ∈ conv(P) : gjt ≥ ξ∗ ∀ t∈ [T ] ∀ j ∈ St

}
. And, if we solve Convex

Mixture over the restricted domain D̃,9 we immediately obtain the O(1/k) convergence rate.
While solving Convex Mixture over the restricted domain D̃ is feasible in principle, it is difficult to

implement in practice because computing a good lower bound ξ∗ may not be straightforward. Instead,
we show that running the fully corrective variant of the CG algorithm (the variant implemented in
Algorithm 1), while being agnostic to a lower bound, still converges at O(1/k) rate. For that, we first
show that each iterate g(k) generated by Algorithm 1 is bounded from below by ξmin, where ξmin is as

9 It can be verified that the constraint set D̃ is still compact and convex.
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defined in Theorem 1. Then, we exploit this property to establish the O(1/k) convergence rate with
the constant scaling in 1/ξ2

min.
To get the best convergence rate, we need to use the tightest lower bound ξmin. Our bound is derived

for general cases, and in this generality, the bound is tight. To see that, consider the setting when the
observations consist of only market shares, so that T = 1, S1 = [n], and the sales fractions y1 comprise
the observed market shares. In this case, it can be shown that the optimal solution g∗ = y1.10 When
Algorithm 1 is initialized at g(0) = y1, it follows from the definition that ξmin = ymin = y1,min, which is
the tightest bound possible.

We can also derive a simple-to-compute (lower) bound for ξmin, as stated in the following proposition:

Proposition 1. Let Nmin = min{Njt | t∈ [T ]; j ∈ St s.t. Njt > 0}. Then, it follows that

ymin ≥ ξmin ≥ ymin · exp
(
−1− N ·NLL(g(0))−

∑T
t=1Nt ·H(yt)

Nmin

)
.

When T = 1, S1 = [n], and g(0) = y1, it follows from the above proposition that ymin ≥ ξmin ≥ ymin/e.
Therefore, the simple-to-compute (lower) bound loses a factor of e in this case.

Remark. Theorem 1 assumes that the support finding step in Algorithm 1 can be solved optimally.11 In
cases where the optimal solution cannot be found, a weaker convergence guarantee can be established
as long as the iterates are (sufficiently) improving, i.e., loss(g(k))< loss(g(k−1)), for each iteration k.
In this case, it follows from existing results (see for instance Zangwill 1969) that the sequence of
iterates converges to a stationary point, which in the case of a convex program is an optimal solution.

5.2. Characterization of the recovered mixture types
We now focus on the support finding step and characterize the structure of the optimal solution. These
solutions comprise the support of the resulting mixing distribution. In each iteration k, the support
finding step is equivalent to solving the following problem (by dropping constant terms):

min
f∈P

T∑
t=1

∑
j∈St

c
(k)
jt fjt,

where c(k)
jt =

(
∇loss(g(k−1))

)
jt

. The optimal solution f (k) to the above problem lies either in P or P \P .
If it lies in P, then (by definition) there exists a parameter vector ωk ∈RD such that f(ωk) = f (k),
so that any such ωk may be used to describe the customer type and make the choice probability
prediction eω

>
k zjS/

(∑
`∈S e

ω>k z`S

)
for the probability of choosing product j from some offer-set S.

However, if the optimal solution f (k) lies in the boundary, i.e. P \P , then there is no straightforward
way to characterize the customer type or make out-of-sample predictions. To deal with this challenge,
we provide a compact characterization of what we call the boundary types, defined as follows:

10 Provided the product features satisfy certain structural conditions; see Theorem 4.
11 Actually, Jaggi (2013) showed that solving it approximately with some fixed additive error is also sufficient to ensure
the O(1/k) convergence rate.
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Definition 1 (Boundary and Non-boundary types). A customer type f is called a bound-

ary type if f ∈P \P , and a non-boundary type, otherwise.

We show below that each boundary type is characterized by two parameters (ω0,θ):

Theorem 2 (Characterization of boundary types). Given a boundary type f in P \P, there

exist parameters ω0,θ ∈RD such that, for each 1≤ t≤ T and j ∈ St, we have

fjt = lim
r→∞

exp ((ω0 + r ·θ)>zjt)∑
`∈St

exp ((ω0 + r ·θ)>z`t)
.

Furthermore, fjt = 0 for at least one (product, offer-set) pair (j,St).

The proof in Appendix A.3 shows how to compute the parameters (ω0,θ) given any boundary type

f ∈P \P . Here, we focus on understanding the implications of the above characterization.

First, since for any boundary type f , fjt = 0 for at least one (product, offer-set) pair (j,St),

there exists no logit parameter vector ω such that fjt = eω
>zjt/

(∑
`∈St

eω
>z`t

)
for all j,St. Second,

boundary types arise as a result of limiting logit models, obtained as the parameter vector ω is pushed

to infinity. In particular, Theorem 2 states that for any boundary type f , there exists parameters

(ω0,θ) such that the choice probabilities for observed (product, offer-set) pairs under f are equal to

those under the limiting type limr→∞ f(ω0 + r ·θ), where recall that f(ω0 + r ·θ) corresponds to the

customer type with logit parameter ω0 + r ·θ. Below, we discuss this characterization in more detail.

The key aspect of our characterization is a preference ordering over the products defined by the

parameter vector θ. This preference order determines the choice of the products from a given offer-set.

For ease of exposition, we describe the preference ordering for the case when product features don’t

change with the offer-set, so we write zj instead of zjt for the feature vector of product j. The

discussion below extends immediately to the more general case by associating a separate product to

each feature vector of interest. To describe the preference order, define product utility uj
def= θ>zj for

product j. These utility values can be visualized as projections of the product feature vectors zj’s

onto the vector θ. They define a preference order � among the products such that j � j′, read as

“product j is weakly preferred over product j′,” if and only if uj ≥ uj′ . The relation � is in general a

weak ordering and not a strict ordering because product utilities may be equal. In order to explicitly

capture indifferences, we write j � j′ if uj >uj′ and j ∼ j′ if uj = uj′ .

Now, when offered a set S, customers of this type purchase only the most preferred products as

determined according to the preference order �. To see that, let C(S) denote the set of most preferred

products in S, so that for all j ∈ C(S), we have j ∼ ` if ` ∈ C(S) and j � ` if ` ∈ S \ C(S). Let

u∗
def= max {uj : j ∈ S} denote the maximum utility among the products in S. We have that u∗ = uj
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for all j ∈ C(S) and u∗ > uj for all j ∈ S \ C(S). Given this and multiplying the numerator and

denominator of the choice probabilities defined in Theorem 2 by e−r·u∗ , we can write for any j ∈ S,

exp ((ω0 + r ·θ)>zj)∑
`∈S exp ((ω0 + r ·θ)>z`)

= e−r·(u
∗−uj) · exp(ω>0 zj)∑

`∈C(S) exp(ω>0 z`) +
∑
`∈S\C(S) e

−r·(u∗−u`) · exp(ω>0 z`)
. (9)

When we take the limit as r→∞, each of the terms e−r·(u`−u∗), ` ∈ S \C(S), goes to zero, so the

denominator converges to
∑
`∈C(S) exp(ω>0 z`). The numerator converges to exp(ω>0 zj) if j ∈ C(S)

and 0 if j ∈ S \C(S). Therefore, we obtain the following choice probability prediction fj,S(ω0,θ) for

any product j and offer-set S from Theorem 2:

fj,S(ω0,θ) =
{

exp(ω>0 zj)/
(∑

`∈C(S) exp(ω>0 z`)
)
, if j ∈C(S) and

0, if j ∈ S \C(S).

From the discussion above, we note the contrasting roles of the parameters θ and ω0. The parameter

vector θ (through the preference ordering � it induces) determines the consideration set C(S), whereas

the parameter vector ω0 determines the logit choice probabilities from within the consideration set.

The parameter vector θ dictates how a product’s features impact its inclusion into the consideration

set. For instance, suppose u∗ is the maximum utility in offer-set S and product j with utility uj <u∗

is not in consideration now. Further, suppose one of the features is price and the corresponding

coefficient is θp < 0. Then, product j will enter into consideration only if its price is sufficiently

dropped to make its utility greater than or equal to u∗. In other words, the price should be dropped

by at least (u∗−uj)/ |θp| to ensure consideration of product j.

The choice behavior we identify for the boundary types is consistent with existing literature,

which establishes that customers often consider a subset of the products on offer before making the

choice (Jagabathula and Rusmevichientong 2016). In fact, consideration sets of the kind we identify

are a special case of the linear compensatory decision rule that has been used as a heuristic for forming

consideration sets in existing literature (Hauser 2014). The rule computes the utility for each product

as a weighted sum of the feature values and chooses all products that have a utility greater than a

cutoff to be part of the consideration set. Finally, multiple distinct tuples of parameters (ω0,θ) can

result in the same limiting choice probabilities f for the observed data. Since the data do not provide

any further guidance, we arbitrarily select one of them. Studying the impact of different selection

rules on the prediction accuracy is a promising avenue for future work.

We conclude this subsection with the following systematic procedure that summarizes our discussion

for making out-of-sample choice predictions for a boundary type:
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Algorithm 2 Predicting choice probabilities for boundary type f(ω0,θ)
1: Input: Offer-set S with product features zjS ∈RD for each j ∈ S

2: Compute utilities uj = θ>zjS for each j ∈ S.
3: Form consideration set C(S) = {j ∈ S | uj = max`∈S u`}
4: For any j /∈C(S), set fj,S(ω0,θ)← 0
5: For any j ∈C(S), set

fj,S(ω0,θ)← exp (ω>0 zjS)∑
`∈C(S) exp (ω>0 z`S)

6: Output: Choice probabilities {fj,S(ω0,θ) : j ∈ S}

5.3. Analysis of recovered distribution for two special cases

We now analyze scenarios under which the optimal solution to the support finding step is indeed a

boundary type. This helps in providing further insights into the structure of the recovered mixing

distribution. Solving the support finding step in the general case is a hard problem and therefore, to

keep the analysis tractable, we focus on the setting in which the data consist of sales counts in a single

time-period when all products are offered (such as market shares data). For this case, the notation

can be simplified.

Since there is only a single offer-set S1 = [n], we represent the features as zi for each product i∈ [n].

Further, the sales counts can be represented using a single vector y := (y1, y2, . . . , yn) ∈ [0,1]n such

that
∑n
i=1 yi = 1 where yi ≥ 0 is the fraction of sales for product i. The choice probabilities f ∈ P

are of the form f = (f1, f2, . . . , fn), also satisfying
∑n
i=1 fi = 1. Similarly, the estimates produced by

Algorithm 1 at any iteration k are of the form g(k) = (g(k)
1 ,g(k)

2 , . . . ,g(k)
n ), where again

∑n
i=1 g(k)

i = 1.

With this notation, the loss functions defined in Section 3 can be written as:

NLL(g) =−
n∑
i=1

yi log (gi) ; SQ(g) = 1
2

n∑
i=1

(yi− gi)2
, (10)

while the support finding step is of the form, with ci
def= −

(
∇loss(g(k−1))

)
i

for each i∈ [n] (we switch

to maximization to aid the analysis below):

max
f∈P

n∑
i=1

ci · fi, (11)

where we drop the explicit dependence of the coefficient ci on the iteration number k for simplicity of

notation. We analyze the optimal solution to the above subproblem under two cases: (1) all product

features are continuous, and (2) some product features are binary.12

12 This subsumes the setting of categorical features since a categorical feature is usually transformed into a set of
binary features using an encoding scheme like dummy coding or one-hot coding.
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5.3.1. All product features are continuous. When all features are continuous, the optimal
solution to subproblem (11) depends on the geometric structure of the observed product features.
Specifically, we consider the (convex) polytope formed by the convex hull of the product features
z1, . . . ,zn, denoted as Zn

def= conv({z1,z2, · · · ,zn}). For this polytope, we define an extreme point as:
Definition 2 (Extreme points). zj is called an extreme point of the convex polytope Zn if

zj /∈ conv({zi : i 6= j,1≤ i≤ n}). Equivalently, extreme points correspond to vertices of Zn.
With this definition, we can establish conditions under which a boundary type is an optimal solution
to the support finding step (11). In particular, we have the following result:

Theorem 3 (Recovery of boundary types). Suppose we observe sales data for only the offer-
set [n]. Let jmax = arg maxj∈[n] cj. If zjmax is an extreme point of the polytope Zn, then the boundary
type f(0,θjmax) is an optimal solution to support finding step (11), where θjmax is such that θ>jmaxzjmax >

θ>jmaxzj for all j 6= jmax. In particular, f(0,θjmax) is of the form:

fj(0,θjmax) =
{

1 if j = jmax

0 otherwise,

The proof in Appendix A.4 shows the existence of such a θjmax . The above result shows that our
estimation method recovers boundary types that consider only a single product amongst the offered
products. The result also leads to the following corollary:

Corollary 1 (All extreme points =⇒ Boundary types always optimal). Suppose we
observe sales data for only the offer-set [n]. If all feature vectors z1,z2, . . . ,zn are extreme points of
the polytope Zn, then boundary types are always optimal solutions for the support finding step (11).

The above result implies that when all product features are extreme points of the polytope Zn, the
support finding step (11) can be solved to optimality in each iteration, where the optimal solution
corresponds to a boundary type that chooses a single product with probability 1 from amongst all
offered products. Consequently, our estimation method decomposes the population into such boundary
types to explain the observed choice data. In fact, in this scenario, we can also establish the following
convergence guarantee for the iterates generated by Algorithm 1:

Theorem 4 (Convergence in finite number of iterations). Suppose we observe sales data
for only the offer-set [n]. Further, suppose that zj is an extreme point of the polytope Zn for all j ∈ [n].
For both the NLL and SQ loss functions defined in (10), the estimates g(k) produced by Algorithm 1
converge to the optimal solution g∗ in at most n iterations. In particular, the optimal solution g∗ = y

and consequently, the CG algorithm is able to perfectly match the observed sales fractions.

Due to the complexity of the resulting optimization problems, there are few convergence guarantees
for the estimation of logit models that exist in the literature. For instance, Hunter (2004) presents
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necessary and sufficient conditions for an iterative minorization-maximization (MM) algorithm to
converge to the maximum likelihood estimate for a single class MNL model. Recently, James (2017)
proposed an MM algorithm for estimation of mixed logit models with a multivariate normal mixing
distribution, but did not provide any conditions for convergence. To the best of our knowledge, our
result is one of the first to provide a convergence guarantee for general mixtures of logit models.

5.3.2. Some (or all) product features are binary. Next, we consider the case when some of
the features are binary. To state the result, we need to introduce additional notation. For each product
`∈ [n], let z` ∈RD1 and b` ∈ {0,1}D2 represent a set of continuous and binary features respectively,
where D1 +D2 =D and D2 > 0. Define the binary relation ∼ on [n] as: i∼ j ⇐⇒ bi = bj . It is easy
to see that ∼ is an equivalence relation on [n], and therefore let E represent the equivalence classes,
i.e. [n] =

⋃
e∈E Se and Se1 ∩Se2 = ∅ for all e1, e2 ∈ E such that e1 6= e2.

With the above notation, we can show that the optimal solution to the support finding step always
corresponds to a boundary type, having the following structure:

Theorem 5 (Binary feature =⇒ Boundary types are always optimal). Suppose we
observe sales data for only the offer-set [n]. Then, there exists e∗ ∈ E such that the optimal solution to
support finding step (11) is a boundary type f(ω0,θ) with θ ∈RD satisfying

θ>(zj ◦bj)> θ>(zi ◦bi) ∀ j ∈ Se∗ ; ∀ i∈ [n] \Se∗ ,

where ◦ denotes vector concatenation. In particular, fi(ω0,θ) = 0 for all i ∈ [n] \ Se∗ so that the
boundary type only considers products within subset Se∗ ⊂ [n].

Theorem 5 establishes that if products have certain binary features (in addition to continuous
features), then the support finding step (11) always has a boundary type as the optimal solution.
The consideration sets of the resulting types follow a conjunctive decision rule (Hauser 2014), where
customers screen products with a set of “must have” or “must not have” aspects—corresponding
to each binary attribute—reflecting (strong) non-compensatory preferences. We can interpret the
above result in the context of our sushi case study (see Section 7.1), where the products represent
two different kinds of sushi varieties—maki and non-maki. The above result says that we recover
boundary types in each iteration, each of which only consider one kind of sushi variety: either maki
or non-maki. Note that the mixing distribution can contain more than one boundary type with the
same consideration set, as the types will be differentiated in their choice behavior according to the
parameters (ω0,θ). In particular, based on the value of the parameter θ, even some products within
subset Se∗ may not be considered by the boundary type. We analyze the structure of the recovered
mixing distribution in more detail in the case study.



Jagabathula, Subramanian, and Venkataraman: Nonparametric estimation of mixing distributions
22 Article submitted to Management Science; manuscript no.

5.4. Heuristic approaches based on above theoretical results for solving the support
finding step in the general case

Characterizing the optimal solution to the support finding step in the general case is hard since the
structure of the optimal solution is governed by the particular values of the coefficients

{
c

(k)
jt

}
j,t

at any iteration k—which themselves are dependent on the initial solution g(0)—and the product
feature variations within each offer-set. Nevertheless, our theoretical results for the characterization
of boundary types (Section 5.2) as well as the single offer-set case (Section 5.3) inform the design of
some heuristics for solving the support finding step in more general scenarios:
• Single offer-set with all continuous features. If the condition in Theorem 3 is satisfied, we know that

the optimal solution to the support finding step is a boundary type. Otherwise, the optimal solution can
be a boundary or non-boundary type. If we define Zn,ext

def= {j ∈ [n] | zj is an extreme point of Zn},
then it follows that f(0,θj) ∈ P for all j ∈ Zn,ext, where θj is as defined in Theorem 3. Conse-
quently, the set of such boundary types, B = {f(0,θj) | j ∈Zn,ext}, provides a feasible search set
for subproblem (11). We can also determine a non-boundary type, say f(ω(k)) as an approximate
solution, based on the discussion under “Solving the support finding step” in Section 4.1. Then, we
can output the type which achieves the best objective as an approximate solution to (11), i.e. we
output: arg maxf∈B ∪{f(ω(k))}

∑n
i=1 ci · fi. We employ a heuristic based on this approach to solve the

support finding step in our sushi case study in Section 7.1.
• Multiple offer-sets. Here again, the optimal solution can either be a boundary type or a non-

boundary type. Similar to the above scenario, we can determine a non-boundary type as an approximate
solution to the support finding step. In our numerical experiments, we observed, in some cases, that the
(non-boundary) type output by the BFGS method was assigning very “small” probabilities to some
(product, offer-set) pairs. This could be an indication that the optimal solution is actually a boundary
type. Motivated by this, we can design a procedure that performs a post-hoc analysis on the type
output by the BFGS method, to determine a boundary type as a candidate solution to the support

finding step. We then output the customer type which achieves the better objective amongst the two
as an approximate solution to the support finding step, refer to Appendix B.3 for an illustration of
this procedure for our case study on the IRI Academic dataset (Section 7.2).

6. Robustness to different ground-truth mixing distributions
In this section, we use a simulation study to showcase the ability of our nonparametric estimator to
obtain good approximations to various underlying mixing distributions. Our method uses only the
transaction data and has no prior knowledge of the structure of the ground-truth distribution. We
compare the mixing distribution estimated by our method to the one estimated by a standard random
parameters logit (RPL) benchmark which makes the static assumption that the underlying mixing
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distribution is multivariate normal. Our results demonstrate the cost of model misspecification—the
parametric RPL benchmark yields significantly poor approximations to the ground-truth mixing
distributions. On the other hand, our nonparametric method is able to automatically learn from the
transaction data to construct a good approximation. This specific property of our estimator makes it
very appealing in practice, where one has little knowledge of the ground-truth mixing distribution.

Setup. So that we can readily compare our method to existing methods, we borrow the experimental
setup from Fox et al. (2011) for our simulation study. Fox et al. propose a nonparametric linear
regression-based estimator for recovering the mixing distribution. The key distinction from our method
is that they require knowledge of the support of the mixing distribution, but our method does not.
We discuss the implications of this difference towards the end of this section.

The universe consists of n= 11 products, one of which is the no-purchase or the outside option.
The firm offers all the products in the universe to the customers, but customizes the product features,
offering product j with feature vector zjt = (zjt1, zjt2) in period t. We assume that the outside option
is represented by the all zeros feature vector (0,0). Customers make choices according to a mixture
of logit model with ground-truth mixing distribution Q. In each time period t, a customer makes a
single choice by first sampling a MNL parameter vector ω(t) = (ω(t)

1 , ω
(t)
2 ) and then choosing product

j with probability

fjt(ω(t)) = exp(ω(t)
1 · zjt1 +ω

(t)
2 · zjt2)∑

`∈[n] exp(ω(t)
1 · z`t1 +ω

(t)
2 · z`t2)

.

We consider three underlying ground-truth distributions Q:
1. Mixture of 2 bivariate Gaussians: Q(2) = 0.4 · N ([3,−1],Σ1) + 0.6 · N ([−1,1],Σ2).
2. Mixture of 4 bivariate Gaussians:

Q(4) = 0.2 · N ([3,0],Σ1) + 0.4 · N ([0,3],Σ1) + 0.3 · N ([1,−1],Σ2) + 0.1 · N ([−1,1],Σ2)

3. Mixture of 6 bivariate Gaussians:

Q(6) = 0.1 · N ([3,0],Σ1) + 0.2 · N ([0,3],Σ1) + 0.2 · N ([1,−1],Σ1)

+ 0.1 · N ([−1,1],Σ2) + 0.3 · N ([2,1],Σ2) + 0.1 · N ([1,2],Σ2)

where Σ1 =
[

0.2 −0.1
−0.1 0.4

]
and Σ2 =

[
0.3 0.1
0.1 0.3

]
denote the variance-covariance matrices of the component

Gaussian distributions.
We generated nine instances by varying the ground-truth mixing distribution Q over the set{
Q(2),Q(4),Q(6)} and the number of time periods T over the set {2000,5000,10000}. For each com-

bination of Q and T and time period t ∈ [T ], we generate choice data as follows: (a) we sample
product features zjtd according to the distribution N (0,1.52) independently for all products j ∈ [n],
except the no-purchase option, and for all features d∈ {1,2}; (b) we sample a logit parameter vector
ω(t) from the ground-truth mixing distribution Q, and then (c) we generate a single choice j ∈ [n]
with probability fjt(ω(t)). Note that there is a single choice observation Nt = 1 in each time period
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Figure 1 Error metrics for the different ground-truth mixing distributions (T = 10,000 periods)

Note. “Normal” and “NP-CG” refer to the RPL model with a bivariate normal mixing distribution and our nonpara-
metric CG-based estimator, respectively. The labels 2-mix, 4-mix and 6-mix refer, respectively, to the ground-truth
mixing distributions Q(2), Q(4) and Q(6), described in the main text. Lower values for the error metrics are preferred.

Table 1 Error metrics for the different ground-truth mixing distributions as a function of the number of periods T

RMISE MIAE

2-mix 4-mix 6-mix 2-mix 4-mix 6-mix

T Normal∗ NP-CG Normal NP-CG Normal NP-CG Normal NP-CG Normal NP-CG Normal NP-CG

2,000 0.29 0.067 0.15 0.067 0.18 0.066 0.24 0.039 0.082 0.037 0.094 0.035
5,000 0.3 0.053 0.15 0.051 0.18 0.053 0.25 0.03 0.078 0.0289 0.094 0.028
10,000 0.3 0.04 0.16 0.042 0.19 0.04 0.25 0.024 0.074 0.023 0.095 0.021
∗: The metrics for the RPL model with a bivariate normal mixing distribution (referred to as “Normal”) are taken from Table 3

in Fox et al. (2011); we obtained similar numbers in our implementations. The labels 2-mix, 4-mix and 6-mix refer, respectively, to the
ground-truth mixing distributions Q(2), Q(4) and Q(6), described in the main text. Lower values for the error metrics are preferred.

t∈ [T ]. We replicate the above process R= 50 times. For each replication r ∈ [R], we obtain mixture

cumulative distribution functions (CDFs) F̂RPL
r and F̂CG

r by fitting the standard RPL model with a

bivariate normal (having non-zero correlation) mixing distribution13 and optimizing the NLL loss

using our CG algorithm, respectively. To assess the goodness of fit, we use the following two metrics

proposed by Fox et al. (2011): the root mean integrated squared error (RMISE) and the mean

integrated absolute error (MIAE), defined as

RMISE =

√√√√ 1
R

R∑
r=1

[
1
V

V∑
v=1

(
F̂r(βv)−F0(βv)

)2
]

and MIAE = 1
V ·R

R∑
r=1

V∑
v=1

∣∣∣F̂r(βv)−F0(βv)
∣∣∣ ,

where F̂r ∈
{
F̂RPL
r , F̂CG

r

}
, βv’s represent V = 104 uniformly spaced points in the rectangle [−6,6]×

[−6,6] where the CDF is evaluated14 and F0 is the CDF of the ground-truth mixing distribution Q.

13 We solved problem (3) using Python SciPy library’s minimize interface with the ‘L-BFGS-B’ method—https:
//docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html.
14 The true mixing distribution’s support lies in this region with probability close to 1.
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Results. Figure 1 and Table 1 summarize the results we obtained when we ran our estimator
for Kmax = 81 iterations.15 Figure 1 shows a bar graph comparing our method to the RPL model
on the RMISE and MIAE metrics. These metrics are compared for the three ground-truth mixing
distributions, for the case with T = 10,000 periods. Table 1 shows a more complete comparison,
including for the cases with T = 2,000 and T = 5,000 periods. We make the following observations:

1. Our nonparametric method is able to automatically construct a good approximation of the
ground-truth mixing distribution Q from the transaction data, without any prior knowledge of the
structure of Q. The benchmark RPL model, on the other hand, performs significantly worse because
of model misspecification.

2. Table 1 shows that our estimator becomes better as the number of periods (and correspondingly,
the samples) T increases. This improvement, which is characteristic of nonparametric estimators,
shows that our method is able to extract more information as more data is made available. The RPL
model, by contrast, does not exhibit any such consistent pattern.

3. Although not shown in Table 1, we note that the errors metrics reported by Fox et al. for their
method (Fox et al. 2011, Tables 1 & 2) are comparable (or slightly worse) to those obtained under
our method. Their method, however, needs the support of the mixing distribution as input. For their
experiments under the simulation setup above, they use a uniform discrete grid as the support of the
mixing distribution. This approach, however, does not scale to high-dimensional settings with larger
D values. Our estimator does not suffer from this limitation—we show that it scales to the feature
dimensions in real-world case studies, with D= 5 (Section 7.1) and D= 11 (Section 7.2).

7. Predictive performance of the estimator
We perform two numerical studies on real-world data to showcase the predictive accuracy of our
method. The first case study uses market share data, while the second study applies our estimation
technique on sales transaction data from multiple stores with varying offer-sets and product prices.

7.1. Case Study 1: SUSHI Preference Dataset

In this study, we compare our CG method with the expectation-maximization (EM) benchmark
on in-sample fit and predictive and decision accuracies. We use the popular SUSHI Preference
dataset (Kamishima et al. 2005) for our study. This dataset has been used extensively in prior work
on learning customer preferences. It consists of the preferences of 5,000 customers over 100 varieties of
sushi. Each customer provides a rank ordering of the top-10 of her most preferred sushi varieties from
among all the 100 varieties. Each sushi variety is described by a set of features like price, oiliness in
taste, frequency with which the variety is sold in the shop, etc. Table EC.5 in Appendix B.2 describes

15 Fox et al. consider support sizes of k2 with k = 1, 2, . . . , 9 in their experiments. We refer the reader to Appendix B.1
for the complete table of results for our estimator.
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the subset of D = 5 features that we used in our experiments. One of the features, style, is binary
valued and the rest are continuous-valued.

Setup. We processed the data to obtain aggregate market share information as follows. We assume
that customers can choose from any of the 100 varieties of sushi and they choose their most preferred
variety. Therefore, the market share yj of sushi variety j is equal to the fraction of customers who
ranked sushi variety j at the top. Only 93 sushi varieties had non-zero market shares, so we restrict
our analysis to these varieties; therefore n= 93. We represent the data as the empirical market shares
vector y = (y1, y2, . . . , yn). We then fit a mixture of logit models to this market share data using
our CG estimator and the EM benchmark. For the EM method, we vary the number K of latent
classes over the set {2,3,4,5,10,15,20,25,30} to estimate K-class LC-MNL models. We initialized
the CG estimator with the output of a 2-class LC-MNL model fit using the EM algorithm. To solve
the optimization problem in the support finding step, we use a heuristic algorithm (see discussion
in Section 5.4 and Appendix B.2) that is based on our theoretical development, and obtains an
approximate solution by exploiting the fact that the optimal solution to the support finding step must
be a boundary type because one of the features is binary-valued (see Theorem 5). We run the CG
algorithm for Kmax = 30 iterations so that the maximum number of types found is at most 30.

7.1.1. In-sample fit and structure of recovered mixing distribution. We first discuss the
in-sample performance achieved by both methods. For the NLL loss, we measure the performance in
terms of the KL-divergence loss, defined as Dalgo

KL
def= NLLalgo−H(y), where H(y) =−

∑n
j=1 yj log yj is

the entropy of the empirical market shares vector and represents the lowest achievable in-sample NLL
loss (by any method), and NLLalgo denotes the NLL loss achieved by algo∈ {EM,CG}. Figure 2 plots
the in-sample KL-divergence loss and squared loss as a function of the number of customer types
for the EM benchmark and the number of iterations for our CG estimator. Note that the number
of iterations of the CG method is an upper bound on the number of customer types it recovers.
Therefore, in the comparison, the CG method is allowed to use the same number of customer types
as—or even fewer than—the EM benchmark.

We make the following observations. First, the CG method consistently achieves a better in-sample
fit than the EM benchmark, even when using far fewer customer types. In particular, at the end
of 30 iterations, CG achieves DCG

KL = 0.0372 with K = 29 types as opposed to DEM
KL = 0.049 with

K = 30 types—a 24% reduction. For the squared loss, CG found K = 23 types with an in-sample
loss of 3.49× 10−4 as opposed to 8.31× 10−4 achieved by EM with K = 30 types—a 58% reduction.
The CG algorithm iteratively adds customer types that explain the observed choice data to the
mixing distribution, which results in a much better fit as compared to the EM algorithm that updates
all customer types together in each iteration. In particular, the EM algorithm is directly solving a
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Figure 2 In-sample performance on the SUSHI dataset

Note. The horizontal axis represents both the number of customer types estimated by the EM benchmark, as well as
the number of iterations in the CG algorithm; since the number of iterations is an upper bound on the number of
types the CG estimator recovers, the plots represent a fair comparison between the methods.

(non-convex) optimization problem over K − 1 +K ·D parameters, for a K-class LC-MNL model,
which makes it challenging to locate the optimal solution. Our method, on the other hand, iteratively
searches for the next customer type by solving the support finding step, which although a non-convex
problem, can be solved optimally in certain scenarios and possesses a lot more structure. Second,
the improvement in SQ loss is significantly higher than the improvement in NLL loss. The reason is
that the M-step in the EM benchmark is non-convex when optimizing the SQ loss; consequently, it
can only be solved approximately, resulting in slow convergence and worse performance for the EM
benchmark. The CG algorithm, on the other hand, required very little customization16 showing its
plug-and-play nature when dealing with different loss functions.

We next analyze the structures of the customer types recovered by our method. For this analysis
we focus on the NLL loss. At the end of 30 iterations, the CG method recovered 29 customer types.
Except for the two customer types which were part of the initial solution, each of the remaining 27
types found by the CG method is a boundary type. These boundary types fall into two classes: those
that consider only the maki (a.k.a rolled sushi) variety and those that consider only the non-maki
variety. It follows from Theorem 5 that these are the only two possible boundary types because there
is only one binary-valued feature, representing whether the sushi is maki or non-maki. Of the 93
varieties of sushi, 13 varieties are maki and the remaining 80 are non-maki. We find that 5 customer
types—comprising 2.5% of the probability mass—only consider the 13 maki varieties, so if one of the
maki varieties is stocked-out, they substitute to one of the remaining maki varieties. The remaining
22 customer types, comprising 46.1% of the probability mass, only consider the 80 non-maki varieties.
The types recovered by our method exhibit strong preferences over the sushi varieties. In fact of the 10

16 In fact, we only had to modify the objective and gradient computations.
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customer types with the largest proportions, 6 types consider only a single sushi variety. By contrast,
the EM algorithm recovers customer types who consider all the sushi varieties and is therefore unable
to fully capture the underlying heterogeneity in the population with the same number of customer
types. See Figure EC.1 in Appendix B.2 for a visual representation of the distinction. Our theoretical
characterization of the choice behavior of boundary types in Section 5.2 further allows managers
to determine changes in sushi characteristics (such as the price) to induce maki customer types to
consider non-maki varieties and vice-versa. Finally, the presence of customer types that only consider
a single sushi variety is consistent with prior work where customers were observed to (consider and)
purchase only a single brand of cars (Lapersonne et al. 1995).

7.1.2. Predictive accuracy on new assortments. To test the predictive performance of the
recovered mixture on previously unseen assortments, we consider the following tasks:

1. Predict market shares when one/two existing sushi varieties are dropped from the assortment.
2. Predict market shares when one new sushi variety is added to the assortment.
3. Predict market shares when one existing sushi variety is replaced by a new variety.
The above prediction tasks are motivated by real-world situations in which products may be

discontinued because of low demand and/or be unavailable due to stockouts, or new products are
introduced into the market. Being able to predict how the population reacts to such changes can
be very useful for a firm. We measured predictive accuracies in terms of two popular metrics, mean
absolute percentage error (MAPE) and root mean-square error (RMSE), which are defined as follows:
for each algo ∈ {EM,CG} and given any test offer-set Stest, we compute

MAPEalgo = 100×
( 1
|Stest|

∑
i∈Stest

∣∣∣ŷi− ŷalgo
i

∣∣∣
ŷi

)
and RMSEalgo =

√√√√ 1
|Stest|

∑
i∈Stest

(ŷi− ŷalgo
i )2

,

where ŷalgo
i is the predicted market share for sushi variety i∈ Stest under the mixture of logit models17

estimated using algo and ŷi is the true market share computed from the test data. We report the
average error across all possible test assortments. For the first scenario when one sushi variety is
dropped, there are 93 test assortments resulting from dropping each sushi variety in turn. Similarly
for the case when two sushi varieties are dropped, resulting in

(93
2

)
test assortments. When one new

variety is added, the training data consists of the market shares when 92 sushi varieties are offered to
the population—we consider all 93 training assortments—and in each case, the test data consists
of only a single assortment, containing all 93 varieties. We report the average error on this test
assortment across each of the training assortments. Similarly, when one existing variety is replaced
by a new variety, the training data consists of market shares when 92 sushi varieties are offered

17 We use the mixing distribution estimated by optimizing the NLL loss.
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Table 2 Mixture estimation times and error in market share predictions on test assortments

Estimation Drop 1 Drop 2 Add 1 Replace 1

Estimator time (secs) RMSE∗ MAPE RMSE∗ MAPE RMSE∗ MAPE RMSE∗ MAPE

EM 914 4.6 83.67 4.6 83.17 4.8 90.23 4.8 89.71
CG 59 3.3 69.75 3.4 69.52 3.4 75.06 3.5 75.07

Improvement (%) 93.5 28.3 16.6 26.1 16.4 29.2 16.8 27.1 16.3
∗: ×10−3. “Drop 1” and “Drop 2” refer respectively to the cases when the test assortment is formed by dropping

one and two existing sushi varieties from the assortment. “Add 1” and “Replace 1” refer respectively to the cases
when the test assortment is formed by adding a new sushi variety to the assortment, and replacing an existing sushi
variety with a new variety. We obtain an average of 28% improvement in the RMSE and 16% in the MAPE metrics.
The experiments were conducted on a computer with a 2.1GHz AMD Opteron(TM) 6272 processor, 32GB RAM and
Ubuntu 14.04 OS—our approach is almost 16× faster than EM.

to the population, and for each training assortment, there are 92 test assortments—obtained by

replacing each existing sushi variety in turn with a new variety. We first compute the average test

error for each training assortment, and finally report the mean of these average test errors across the

training assortments.18

Table 2 reports the errors for each prediction task. For the EM algorithm, we choose the best

performing model amongst all estimated K-class LC-MNL models. It is evident that our mixture

estimation method significantly outperforms the EM benchmark across both metrics and all prediction

tasks. In particular, we notice an average of 28% reduction in RMSE and 16% reduction in MAPE.

Finally, we also observe from Table 2 that the CG method is almost 16× faster than EM-based

estimation, showing that it can scale better to datasets containing large number of choice observations.

7.1.3. Decision accuracy. We now focus on the decision accuracies of the methods. We consider

the assortment optimization decision, which involves determining the subset of products to offer to

the population to maximize expected revenue.

Setup. In order to compute the optimal assortment and ground-truth revenues, we pre-processed

the data as follows: We assume that the 93 sushi varieties with non-zero market shares in the dataset

comprise the entire sushi market. We focus on maximizing the revenue from the sale of the top-49

sushi varieties by market share. The remaining 44 varieties form the outside option. Treating the

outside option as one “product,” we obtain a total of n= 50 products. Without loss of generality, we

suppose that the outside option is indexed by j = 50. For each sushi variety j ∈ [n], we let yj denote

its market share; for the outside option, we obtain its market share by summing the market shares of

all the 44 sushi varieties it comprises. We let rj denote the price (present as the normalized price

feature in the dataset) of product j. We set the price of the outside option to 0. We suppose that the

18 The improvements were similar when considering the minimum and maximum of the average test errors.
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Table 3 Optimal assortment sizes and ground-truth revenue generated

Estimator # customer types recovered Optimal assortment size Revenue

EM
20 5 9.9× 103

25 5 9.9× 103

30 5 9.9× 103

CG
20 17 11.9× 103

24 20 12.1× 103

28 22 12.2× 103

Note that our estimation method is able to extract around 23% more revenue than that generated by the EM
benchmark. Here, revenue is measured in units of the normalized price feature (see Table EC.5) of each sushi variety.

outside option is always offered. Then, our goal is to find the subset of the remaining products to
maximize the expected revenue; that is, our goal is to solve

max
S∈[n−1]

∑
j∈S

rj · (Probability that j is chosen from S ∪{n}) .

We fit mixtures of logit models by optimizing the NLL loss using the CG and EM methods and
then solve the above optimization problem under both the models. To solve the optimization problem,
we used the mixed-integer linear program (MILP) described in Méndez-Dı́az et al. (2014). This MILP
takes as input the proportions of each mixture component, product utilities under each mixture
component and the product prices, and outputs the optimal assortment. We solved the MILPs using
Gurobi Optimizer version 6.5.1. The MILPs ran to optimality, so the recovered assortments were
optimal for the given models.

Results and Discussion. We fit a K-class LC-MNL model using the EM method and run the
CG algorithm for K iterations to estimate a mixture of logit models, where K ∈ {20,25,30}. Table 3
reports the optimal assortment sizes and the ground-truth revenues extracted from the population.
We compute the ground-truth revenue by assuming that each of the 5,000 customers in the dataset
purchases the most preferred of the offered products, as determined from her top-10 ranking; if none
of the offered products appears in the customer’s top-10 ranking, then we assume that the customer
chose the outside option.

We note that the EM method offers only 5 sushi varieties as part of its optimal assortment. The
reason is that the customer types recovered by the EM method are not sufficiently diverse (refer to
the discussion in Section 7.1.1) because of which the MILP concludes that a small offering suffices
to extract the most revenue from the population. In fact, the MILP ends up offering the 5 sushi
varieties with the highest prices. By contrast, our method finds customer types with strong preferences
who have sufficiently different tastes so that the MILP concludes that a larger variety (around 20),
consisting of both high-priced and low-priced sushi varieties, is needed in the optimal offering. The
consequence is that we are able to extract upto 23% more revenues from the population.
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7.2. Case Study 2: IRI Academic Dataset

We now illustrate how our method applies to a typical operations setting in which both the offer-sets
and product prices vary over time. Offer-sets vary because of stock-out events (in retail settings)
and deliberate scarcity (in revenue management settings). Prices vary because of promotion activ-
ity or dynamic pricing policies. We use real-world sales transaction data from the IRI Academic
Dataset (Bronnenberg et al. 2008) which contains purchase transactions of consumer packaged goods
(CPG) for chains of grocery and drug stores. The dataset consists of weekly sales transactions
aggregated over all customers. Each transaction contains information such as the week and store
of purchase, the universal product code (UPC) of the purchased item, price of the item, etc. For
our analysis, we consider transactions for five product categories in the first two weeks of the year
2011: shampoo, yogurt, toothbrush (toothbr), household cleaner (hhclean), and coffee. Table EC.6 in
Appendix B.3 describes the summary statistics of the dataset.

Setup. We consider a setup similar to that of Jagabathula and Rusmevichientong (2016), who
used the IRI dataset to test the predictive power of their pricing method. We pre-process the raw
transactions (separately for each product category), as follows. We aggregate the purchased items by
vendors19 to deal with the sparsity of the data. Then, we further aggregate the vendors into n= 10
“products”—one product each for the top 9 vendors with the largest market shares and a single product
for all remaining vendors. This aggregation ensures that there is sufficient coverage of products in
the training and test offer-sets. Next, each combination of store and week corresponds to a discrete
time period t. The offer-set St is chosen as the union of all products purchased during the particular
store-week combination. Then, for each product and offer-set pair (j,St), the number of sales Njt

is computed using the observed sales for product j in the store-week combination corresponding
to St. The price pjt of product j in offer-set St is set as the sales-weighted average of the prices of
the different UPCs that comprise the product. The number of offer-sets obtained for each product
category after this pre-processing step are also listed in Table EC.6.

We assume that when offered subset St and prices (pjt : j ∈ St), each arriving customer samples the
MNL parameter vector (µ, β) according to some mixing distribution Q and chooses product j ∈ St
with probability:

fjt(µ, β) = exp (µj − β · pjt)∑
`∈St

exp (µ`− β · p`t)
.

Here, µ= (µ1, µ2, . . . , µn)∈Rn are the alternative specific coefficients, β ∈R is the price coefficient.
The taste vector ω = (µ, β)∈RD with D= n+ 1 = 11 in this context.

We fit a mixture of logit models to the processed transaction data using both the CG and EM
methods. As for the sushi case study, we initialize the CG algorithm with the output of a 2-class

19 Each purchased item in the dataset is identified by its collapsed universal product code (UPC)—a 13-digit-long
code with digits 4 to 8 denoting the vendor.
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Table 4 Percentage improvements in average train/test loss over EM benchmark

Product category SQ loss NLL loss

Train Test Train Test

Shampoo 6.4 5.1 3.4 2.3
Toothbrush 5.3 4.3 2.4 1.3

Household Cleaner 5.3 4.1 1.9 1.2
Yogurt 7.0 5.1 8.3 7.1
Coffee 4.3 2.6 3.7 2.4

Average 5.7 4.2 3.9 2.9

LC-MNL model fit using the EM algorithm and solve the optimization problem in the support finding
step using the heuristic method described in Appendix B.3 (also refer to the discussion in Section 5.4).
We run the CG method for Kmax = 10 iterations, which results in a mixture with at most 10 customer
types. We also fit a 10-class LC-MNL model using the EM algorithm.

Results and Discussion. Similar to Jagabathula and Rusmevichientong (2016), we conduct a
2-fold cross-validation. We randomly partition the offer-sets into two parts of roughly equal sizes,
fit a mixture of logit model to one part (the training set), and then evaluate its predictions on the
other part (the test set). We repeat this process with the train and test sets interchanged. We report
performance on both the train and test datasets—all quantities referred to below are computed
by taking an average across the two folds. For the NLL loss, we measure the performance using
the metric ∆dataset

algo = NLLdataset
algo −Hdataset where Hdataset is the sales-weighted entropy of the observed

sales, defined as Hdataset = − 1
N

∑T
t=1
∑
j∈St

Njt log yjt, for dataset ∈ {train, test}, algo ∈ {EM,CG},
and NLLdataset

EM ,NLLdataset
CG denote the NLL loss achieved by the EM and CG methods, respectively. In

Table 4, we report the percentage improvement 100× (∆dataset
EM −∆dataset

CG )/∆dataset
EM . Similarly, for the

SQ loss, we report 100× (SQdataset
EM − SQdataset

CG )/SQdataset
EM , where SQdataset

algo denotes the SQ loss achieved
by algo∈ {EM,CG} on dataset∈ {train, test}.

Our estimator achieves better in-sample loss across all product categories for both loss functions—an
average of 5.7% reduction for SQ loss and 3.9% for the NLL loss. The in-sample improvement is
largest for the yogurt category—we obtain 7.0% reduction for SQ loss and 8.3% for the NLL loss.
The superior in-sample fit translates to better test performance as well, with 5.1% reduction in SQ
loss for the yogurt and shampoo categories, and 7.1% reduction in NLL loss for the yogurt category.

We also analyze the structure of the recovered mixing distribution, including the presence of
boundary types—see Appendix B.3 for a detailed discussion.

8. Extension: accounting for endogeneity in product features
In many applications of discrete choice modeling, a product feature may be correlated with features not
included in the model. The omitted features tend to be those that are unobserved. If such correlations



Jagabathula, Subramanian, and Venkataraman: Nonparametric estimation of mixing distributions
Article submitted to Management Science; manuscript no. 33

are ignored during estimation, then the coefficient estimated for the included feature could be biased.
This phenomenon is referred to broadly as endogeneity. The classical example is that product prices
are often correlated with unobservables, such as product quality, and ignoring such unobservables
may lead one to conclude that higher prices lead to higher demands, when in fact, the higher demand
was caused by higher quality. Petrin and Train (2010) offer other examples of endogeneity.

Several techniques have been proposed in existing literature to deal with the issue of endogeneity in
discrete choice models. In this section, we show how one such technique can be incorporated into our
method. We use the control function method proposed by Petrin and Train (2010), which generalizes
the demand shocks approach proposed in Berry et al. (1995). We illustrate its use in our method
using the following modification of the simulation setup from Section 6:

Utility model. We follow the setup of Section 6. We fix a choice of the ground-truth mixing
distribution Q and number of time periods T . We then generate the choice data as follows. In each
period t∈ [T ], a customer arrives and is offered all the n= 11 products, including the no-purchase
option. Instead of sampling a two-dimensional parameter vector as before, the customer now samples
a three-dimensional parameter vector (ω(t)

1 , ω
(t)
2 , ω

(t)
3 ) according to Q and assigns the following utility

to product j: Ujt = ω
(t)
1 ·xjt +ω

(t)
2 · zjt +ω

(t)
3 ·µjt + εjt,

where (xjt, zjt, µjt) is the feature vector of product j in period t and (εjt : j ∈ [n]) are independent
and identically distributed standard Gumbel random variables. The feature vector of the no-purchase
option is set to (0,0,0). Customers choose the product with the highest utility, resulting in the
standard MNL choice probability. The key difference in the utility model from the setup above is
that while xjt and zjt are observed, µjt is unobserved and is correlated with xjt. As is standard in the
literature, we assume that the endogenous feature is impacted by a set of instruments w and the
exogenous feature: xjt = γ1 ·wjt,1 + γ2 ·wjt,2 + γ3 · zjt +µjt.

Control function correction. To deal with endogeneity, the control function (CF) approach
obtains a proxy for the term µjt by regressing the endogenous feature xjt on the instruments
(wjt,1,wjt,2) and the exogenous feature zjt and then plugs in the residual µ̂jt = xjt− γ̂> (wjt,1,wjt,2, zjt),
where γ̂ represents the estimated regression parameters. In other words, the method estimates the
coefficients using the following utility model: Ûjt = ω

(t)
1 ·xjt +ω

(t)
2 · zjt +ω

(t)
3 · µ̂jt + εjt.

Once we plug in the residual, the estimators are run as before. They now estimate a mixing
distribution over D= 3 parameters, where the additional random parameter is for the unobservable µjt.

Setup. For our experiments, we sample (ω(t)
1 , ω

(t)
2 ) according to the distribution Q(2), which is a

mixture of two bivariate Gaussians, as defined in Section 6. We sample ω(t)
3 according to N (−1,0.32),

independently of ω(t)
1 and ω(t)

2 . For each time period t and product j (except the no-purchase option),
we sample the exogenous feature zjt according to N (0,1.52), the instruments wjt1,wjt2 according to
N (0,1), and the unobservable µjt according to N (0,1), all independently of each other. We choose
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Table 5 Recovery metrics with endogenous product features

RMISE MIAE

Estimator Without CF With CF Without CF With CF

Normal 0.121 0.095 0.057 0.046
NP-CG 0.074 0.059 0.039 0.038

All differences are statistically significant at 1% level according to a paired samples t-test. “Without CF” refers to the case
when endogeneity is ignored and “With CF” refers to the case when control function (CF) correction is applied.

γ = (0.54,0.54,0.54) to ensure that the marginal distribution of xjt matches the marginal distribution
of the features for the case without endogeneity in Section 6. Then, we generate choices for T = 15,000
periods.

Results. Table 5 compares our CG method to the standard RPL model with a diagonal variance-
covariance matrix on the same RMISE and MIAE metrics, both when endogeneity is ignored and
when endogeneity is corrected using the CF approach. We compute the error metrics only for the
distribution of (ω1, ω2), and not ω3. We make the following observations:

1. Ignoring endogeneity can worsen the recovery of the underlying mixing distribution, as is evident
in the noticeably larger RMISE value for the benchmark RPL model.

2. Misspecification in the mixing distribution can impact recovery more adversely than ignoring
endogeneity. Our method without the CF correction has lower error metrics than the benchmark with
the CF correction. This shows that having the freedom of choosing the mixing distribution can help
mitigate the effects of endogeneity bias.

3. Our estimator is compatible with the CF approach, allowing one to correct for endogeneity and
obtain a better approximation to the underlying mixing distribution.

9. Conclusions
This paper proposes a novel nonparametric method for estimating the mixing distribution of a mixture
of logit models given sales transactions and product availability data. Unlike traditional methods
that impose a parametric assumption on the mixing distribution, our approach finds the best fitting
distribution to the data, where the fit to the data is measured through a loss function such as the
standard log-likelihood loss, from the class of all possible mixing distributions. We formulate the
estimation problem as a constrained convex program by using the insight that instead of optimizing
over the mixing distribution, the estimation problem can be solved by directly optimizing over the
predicted choice probabilities for the observed choices in the data—subject to the constraint that
they are consistent with some underlying mixing distribution. We then apply the conditional gradient
algorithm to solve this convex program, which simultaneously performs both tasks of optimizing over
the predicted choice probabilities and recovering the underlying mixing distribution consistent with
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those probabilities. Our theoretical results establish sublinear convergence rate of our estimator and
characterize the structure of the mixing distribution recovered by our method. Specifically, in addition
to standard logit types, we show that our method naturally recovers customer types with consideration
sets, and our theoretical analysis studies the consideration set structure of such types. Through a
numerical study on synthetic data, we show that our estimator can obtain good approximations to
various complex ground-truth mixing distributions, despite having no knowledge of their underlying
structure. We also show that our approach outperforms the standard EM benchmark in terms of
in-sample fit, predictive and decision accuracies, while being an order of magnitude faster, in two case
studies on real data.

There are numerous avenues for future work. We specifically focused on the MNL model in this paper
because of its widespread use, but our approach is general and directly applicable for other choice
model families (with the caveat that the subproblems can be solved reasonably efficiently). Applying
our mixture estimation technique in the context of choice models like the nested logit or Mallows
model is an interesting direction for future work. Moreover, it can be shown that our framework can
be used to learn distributions over preference orderings, resulting in a fully nonparametric approach.
The subproblem in each iteration in that context corresponds to finding a single preference ordering
(or ranking) which has connections with the learning to rank (Liu 2009) and rank aggregation (Dwork
et al. 2001) literatures. In fact, Jagabathula and Rusmevichientong (2018) recently applied some of
these ideas to estimate the best fitting distribution over preference orderings, but they did not take
into account any product features. Extending their approach to also account for product features
is a promising future direction. Finally, our current estimation method cannot account for fixed
parameters (across customer types) in the utility specification. Incorporating fixed effects into the
estimation framework will also be an important next step.

Acknowledgments
The authors would like to thank the Department Editor, Associate Editor, and the anonymous referees whose

comments and feedback helped improve the manuscript greatly. They would also like to thank the conference
participants at MSOM and INFORMS, the workshop participants at the IMA Data-Driven Supply Chain
Management workshop, and the seminar participants at NYU Stern, UT Dallas Jindal, and Northwestern
Kellogg for their constructive comments that have helped improve the paper.

References
Bach F (2013) Learning with submodular functions: A convex optimization perspective. Foundations and Trends in

Machine Learning 6(2-3):145–373.

Berry S, Levinsohn J, Pakes A (1995) Automobile prices in market equilibrium. Econometrica 63(4):841–890.

Bhat CR (1997) An endogenous segmentation mode choice model with an application to intercity travel. Transportation
science 31(1):34–48.



Jagabathula, Subramanian, and Venkataraman: Nonparametric estimation of mixing distributions
36 Article submitted to Management Science; manuscript no.

Bohning D, Schlattmann P, Lindsay B (1992) Computer-assisted analysis of mixtures (c.a.man): statistical algorithms.
Biometrics 48(1):283–303.

Bronnenberg BJ, Kruger MW, Mela CF (2008) Database paper-the iri marketing data set. Marketing Science
27(4):745–748.

Clarkson KL (2010) Coresets, sparse greedy approximation, and the frank-wolfe algorithm. ACM Transactions on
Algorithms (TALG) 6(4):63.

Dwork C, Kumar R, Naor M, Sivakumar D (2001) Rank aggregation methods for the web. Proceedings of the 10th
International Conference on World Wide Web, (ACM, New York), 613–622.

Feng L, Dicker LH (2018) Approximate nonparametric maximum likelihood for mixture models: A convex optimization
approach to fitting arbitrary multivariate mixing distributions. Computational Statistics & Data Analysis
122:80–91.

Fox JT, il Kim K, Ryan SP, Bajari P (2011) A simple estimator for the distribution of random coefficients. Quantitative
Economics 2(3):381–418.

Frank M, Wolfe P (1956) An algorithm for quadratic programming. Naval research logistics quarterly 3(1-2):95–110.

Garber D, Hazan E (2015) Faster rates for the frank-wolfe method over strongly-convex sets. Proceedings of the 32nd
International Conference on Machine Learning (ICML-15), 541–549.
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Online Appendix

A Conditional Gradient Approach for Nonparametric
Estimation of Mixing Distributions

Appendix A: Proofs of theoretical results

A.1. Proof of Lemma 1: convex mixture is convex program

The objective function is by definition convex. Therefore, it is sufficient to show that the constraint set
conv(P) is convex. For that, we note that since all entries of f(ω) are between 0 and 1 for any ω ∈RD, all
limit points of the set

{
f(ω) : ω ∈RD

}
are also bounded. Therefore, P is a bounded set in RM . As it is

closed by definition, it follows from the Heine-Borel theorem that P is compact. Further, since the convex
hull of a compact subset of the Euclidean space is compact, it follows that conv(P) is compact, and by the
definition of a convex hull it is convex. The claim then follows. �

A.2. Proof of Theorem 1: Sublinear convergence

We first prove the rate for the squared loss, and then consider the negative log-likelihood loss.

A.2.1. Squared loss. For SQ loss, the convergence rate follows directly from existing results. For
instance, Jaggi (2013) showed, for the optimization problem minx∈D h(x) where h(·) is a differentiable convex
function and D is a compact convex set, that the iterates of the fully corrective Frank-Wolfe variant (which is
the one we consider) satisfy:

h(x(k))−h(x∗)≤ 2 ·Ch
k+ 2 (EC.1)

for all k≥ 1. Here Ch is the curvature constant—a measure of the “non-linearity”—of the function h(·) over
the domain D, defined as:

Ch := sup
x,s∈D
γ∈[0,1]

r=x+γ(s−x)

2
γ2 ·

(
h(r)−h(x)−〈∇h(x),r−x〉

)
.

Since h(·) is convex, the curvature constant Ch ≥ 0. In addition, if the function h(·) is twice differentiable,
then it can be shown (Jaggi 2011, Equation 2.12) that

Ch ≤ sup
x,s∈D

r∈[x,s]⊆D

(s−x)>∇2h(r)(s−x),

where [x, s] is the line-segment joining x and s—since D is convex, it lies within D.
In our case, the convex objective h= SQ and the domain D= conv(P). Further, the hessian ∇2SQ(·) is a

diagonal matrix with entry corresponding to product j in offer-set St as (∇2SQ(r))jt =Nt/N . Then, consider
the following:

CSQ ≤ sup
x,s∈D

r∈[x,s]⊆D

(s−x)>∇2SQ(r)(s−x)

= sup
x,s∈D

1
N
·
T∑
t=1

∑
j∈St

(sjt−xjt)2 ·Nt
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= sup
x,s∈D

1
N
·
T∑
t=1

Nt ·
∑
j∈St

(sjt−xjt)2

≤ sup
x,s∈D

1
N
·
T∑
t=1

Nt ·
∑
j∈St

|xjt− sjt| (since |xjt− sjt| ≤ 1)

≤ sup
x,s∈D

1
N
·
T∑
t=1

Nt ·
∑
j∈St

(|xjt|+ |sjt|) (using triangle inequality)

= sup
x,s∈D

1
N
·
T∑
t=1

Nt · (1 + 1) (since choice probs. sum to 1 in each offer-set)

= 1
N
· 2 ·N = 2

The result then follows by plugging in CSQ ≤ 2 in equation (EC.1) above.

A.2.2. Negative log-likelihood loss. We refer to the domain conv(P) as D below for succinct notation.

We establish the convergence rate assuming that yjt > 0 for all j ∈ St and all offer-sets St, but the arguments

below can be extended in a straight-forward manner to the case when some of the yjt’s are zero by dropping

terms for those (product, offer-set) pairs when defining the NLL loss objective (since they do not contribute

anyway to the loss objective), and only maintaining the choice probabilities for the the remaining (product,

offer-set) pairs.

The proof proceeds in the following steps:

1. We show that there exists η > 0 such that the iterates g(k) in Algorithm 1 satisfy g(k)
jt ≥ η for all j ∈ St

and all 1≤ t≤ T , and all k≥ 0. The idea is that if any of the iterates get too close to 0, then the objective

value NLL(g(k)) will exceed the starting objective value NLL(g(0)) which is a contradiction since the fully

corrective variant of the Frank-Wolfe algorithm produces a decreasing objective value in each iteration.

2. Utilizing the lower bound computed in Step 1, we adapt existing arguments from Guélat and Marcotte

(1986) to show that Algorithm 1 achieves O(1/k) convergence to the optimal solution.

We first prove Step 2 assuming the existence of a lower bound η, and then compute a tight value for η.

Step 2: convergence rate. In particular, we establish the following lemma:

Lemma EC.1. Suppose there exists η > 0 such that the iterates g(k) in Algorithm 1 satisfy g(k)
jt ≥ η for all

j ∈ St and all 1≤ t≤ T , and all k≥ 0. Then, there exists index K̄ and constant κ such that

NLL(g(k))−NLL(g∗)≤ 4
η2 · (k+κ) ∀ k≥ K̄.

Proof. Define D̃=
{

g ∈D | gjt ≥ η√
2 ∀ j ∈ St ∀1≤ t≤ T

}
. At any iteration k≥ 1, let d(k) := f (k)−g(k−1)

where recall that f (k) ∈ arg minv∈P
〈
∇loss(g(k−1)),v−g(k−1)〉. Now, observe that for any k≥ 1:

NLL(g∗)−NLL(g(k−1))≥
〈
∇NLL(g(k−1)),g∗−g(k−1)〉 (since NLL(·) is convex)

≥
〈
∇NLL(g(k−1)),f (k)−g(k−1)

〉
(using definition of f (k)) (EC.2)

=
〈
∇NLL(g(k−1)),d(k)〉
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Next, consider a step size γ ∈ [0,1] such that g(k−1) + γ · d(k) ∈ D̃. Using second-order Taylor series

approximation of NLL(·) around the point g(k−1), we have:

NLL(g(k−1) + γ ·d(k)) = NLL(g(k−1)) + γ
〈
∇loss(g(k−1)),d(k)〉+ γ2

2 d(k)>∇2NLL(rk)d(k),

where rk lies on the line segment [g(k−1),g(k−1) + γ · d(k)]. Since g(k−1) ∈ D̃ and g(k−1) + γ · d(k) ∈ D̃, it

implies rk ∈ D̃ (since D̃ is convex), and consequently rk,jt ≥ η√
2 for all j ∈ St and all 1≤ t≤ T . Then, consider

the following:

NLL(g(k−1) + γ ·d(k)) = NLL(g(k−1)) + γ
〈
∇NLL(g(k−1)),d(k)〉+ γ2

2 d(k)>∇2NLL(rk)d(k)

= NLL(g(k−1)) + γ
〈
∇NLL(g(k−1)),d(k)〉+ γ2

2 ·N

T∑
t=1

∑
j∈St

Njt ·d(k)
jt

2

r2
k,jt

≤NLL(g(k−1)) + γ
〈
∇NLL(g(k−1)),d(k)〉+ γ2

η2 ·N

T∑
t=1

∑
j∈St

Njt

(since
∣∣∣d(k)
jt

∣∣∣≤ 1 and rk,jt ≥
η√
2
∀j ∈ St ∀1≤ t≤ T )

≤NLL(g(k−1))− γ ·
(
NLL(g(k−1))−NLL(g∗)

)
+ γ2

η2 {using equation (EC.2)}

Denoting gap(g) = NLL(g)−NLL(g∗) as the optimality gap, we get

NLL(g(k−1) + γ ·d(k))≤NLL(g(k−1))− γ · gap(g(k−1)) + γ2

η2 (EC.3)

Now, choose γ∗ = η2·gap(g(k−1))
2 and observe that γ∗ minimizes the RHS of equation (EC.3).

Claim 1: g(k−1) + γ∗ ·d(k) ∈ D̃.

This means that for any 1≤ t≤ T and any j ∈ St, we need to show:

g(k−1)
jt +

d(k)
jt · η2

2 · gap(g(k−1))≥ η√
2

⇐⇒ −d(k)
jt · gap(g(k−1))≤ 2 ·

(
g(k−1)
jt − η√

2

η2

)

⇐⇒ (g(k−1)
jt − f (k)

jt ) · gap(g(k−1))≤ 2 ·
(

g(k−1)
jt − η√

2

η2

)
(using defn. of d(k))

⇐= g(k−1)
jt · gap(g(k−1))≤ 2 ·

(
g(k−1)
jt − η√

2

η2

)
(since gap(g(k−1))≥ 0)

⇐⇒ 1
N

T∑
t=1

∑
`∈St

N`t log g∗`t
g(k−1)
`t

≤ 2
η2 −

√
2

η · g(k−1)
jt

(using defn. of gap(·))

⇐= 1
N

T∑
t=1

∑
`∈St

N`t ·

(
g∗`t

g(k−1)
`t

− 1
)
≤ 2
η2 −

√
2

η · g(k−1)
jt

(since log z ≤ z− 1 ∀ z > 0)

⇐⇒ 1
N

T∑
t=1

∑
`∈St

N`t ·

(
g∗`t

g(k−1)
`t

)
≤ 1 + 2

η2 −
√

2
η · g(k−1)

jt

⇐= 1
N

T∑
t=1

∑
`∈St

N`t ·
(

1
η

)
≤ 1 + 2

η2 −
√

2
η · g(k−1)

jt

(since 0≤ g∗`t ≤ 1 and g(k−1)
`t ≥ η ∀`∈ St ∀ 1≤ t≤ T )
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⇐= 1
η
≤ 1 + 2

η2 −
√

2
η · η

(since g(k−1)
jt ≥ η)

⇐⇒ 0≤ η2− η+ 2−
√

2

The final statement is true for any η > 0 and therefore the claim follows. In addition, it is easy to see that
g(k−1) + γ ·d(k) ∈ D̃ for all γ ∈ [0,mk] where mk

def= min
(

1, η
2·gap(g(k−1))

2

)
.

Claim 2:
gap(g(k))≤ gap(g(k−1)) ·

(
1− mk

2

)
∀ k≥ 1. (EC.4)

Consider the following:

NLL(g(k))≤ min
γ∈[0,1]

NLL(g(k−1) + γ ·d(k))︸ ︷︷ ︸
since FCFW guarantees as much progress as line-search FW

≤ min
γ∈[0,mk]

NLL(g(k−1) + γ ·d(k))

≤ min
γ∈[0,mk]

NLL(g(k−1))− γ · gap(g(k−1)) + γ2

η2(
since g(k−1) + γ ·d(k) ∈ D̃ ∀ γ ∈ [0,mk] and using equation (EC.3)

)
= NLL(g(k−1))−mk · gap(g(k−1)) + m2

k

η2

(by choice of mk)

≤NLL(g(k−1))−mk · gap(g(k−1)) + mk · η2 · gap(g(k−1))
2 · η2(

since mk ≤
η2 · gap(g(k−1))

2

)
= NLL(g(k−1))− mk

2 · gap(g(k−1))

Then subtracting NLL(g∗) from both sides, the claim follows.
Claim 3: limk→∞mk = 0.
Since both sequences

{
gap(g(k))

}
k

and {mk}k are non-increasing and bounded below by zero, it follows
that (taking limits on both sides of equation (EC.4)):

lim
k→∞

gap(g(k))≤ lim
k→∞

gap(g(k−1)) ·
(

1− 1
2 lim
k→∞

mk

)
=⇒ lim

k→∞
gap(g(k)) · lim

k→∞
mk ≤ 0

=⇒ lim
k→∞

gap(g(k)) = 0 or lim
k→∞

mk = 0
(
since mk ≥ 0 and gap(g(k))≥ 0 ∀k

)
=⇒ lim

k→∞
mk = 0 (using defn of mk)

Given the above claims, let K̄ be the smallest iteration number such that mK̄ ≤ 1. Then from equation (EC.4)
it follows that

gap(g(k))≤ gap(g(k−1)) ·
(

1− mk

2

)
∀ k≥ K̄ ⇐⇒ mk+1

2 ≤ mk

2 ·
(

1− mk

2

)
∀ k≥ K̄

⇐⇒ 2
mk+1

≥ 2
mk

· 2
2−mk

∀ k≥ K̄

⇐⇒ 2
mk+1

≥ 2
mk

·
(

1 + mk

2−mk

)
∀ k≥ K̄

=⇒ 2
mk+1

≥ 2
mk

+ 1 ∀ k≥ K̄
(
since mk ≥ 0 ∀ k≥ K̄

)
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=⇒ 2
mk

≥ k− K̄ + 2
mK̄

∀ k≥ K̄

⇐⇒ mk ≤
2

k+ κ̃
∀ k≥ K̄

(
where κ̃= 2

mK̄

− K̄
)

⇐⇒ gap(g(k−1))≤ 4
η2 · (k+ κ̃) ∀ k≥ K̄

⇐⇒ gap(g(k))≤ 4
η2 · (k+κ) ∀ k≥ K̄ (where κ= 1 + κ̃)

�

Step 1: lower bound for iterates. Lemma EC.1 establishes 1/k convergence rate of Algorithm 1 given any
lower bound η > 0 for the iterates g(k). We now come up with a tight lower bound— ξmin in the main text,
based on the initialization, i.e. we show that

g(k)
jt ≥ ξmin ∀ j ∈ St ∀ 1≤ t≤ T and ∀ k≥ 0

For any vector x = (x1, x2, . . . , xm), denote xmin
def= mini=1,2,...,m xi. Then, for any ξ ∈ (0,1], consider the

following optimization problem:

G(ξ)≡ min
x∈RM

NLL(x) s.t. xjt ≥ 0 ∀ j ∈ St;
∑
j∈St

xjt = 1; ∀1≤ t≤ T and xmin ≤ ξ (EC.5)

We first come up with a closed-form expression for G(ξ). For each 1 ≤ t ≤ T and each i ∈ St, define the
following optimization problem:

Gi,t(ξ)≡ min
x∈RM

NLL(x) s.t. xjt′ ≥ 0 ∀ j ∈ St′ ;
∑
j∈St′

xjt′ = 1; ∀1≤ t′ ≤ T and xit ≤ ξ (EC.6)

Claim 1:
G(ξ) = min

1≤t≤T
min
i∈St

Gi,t(ξ) for all ξ ∈ (0,1]

It is easy to see that min1≤i≤tmini∈St Gi,t(ξ)≤G(ξ) for any ξ ∈ (0,1] since the optimal solution for prob-
lem (EC.5) is feasible for some (product, offer-set) pair (i, t).

For the other direction, suppose min1≤t≤T mini∈St Gi,t(ξ) =Gj∗,t∗(ξ) for some j∗ ∈ St∗ . Let x∗ denote the
optimal solution for Gj∗,t∗(ξ), so that x∗j∗,t∗ ≤ ξ. This also means that x∗min ≤ ξ and consequently x∗ is a
feasible solution for problem (EC.5). Therefore, G(ξ)≤Gj∗,t∗(ξ) = min1≤t≤T mini∈St Gi,t(ξ) and the claim
then follows.

Claim 2:

Gi,t(ξ) = 1
N
·

(
Nt ·DKL(yit‖ξ) +

T∑
t′=1

Nt′ ·H(yt′)
)
∀ ξ ∈ (0, yit].

This follows because the optimal solution, say x∗, to problem (EC.6) is of the form: (1) x∗jt′ = yjt′ for all
j ∈ St′ , ∀t′ 6= t (2) x∗jt = yjt

1−yit
· (1− ξ) for all j ∈ St \ {i} and (3) x∗it = ξ.

This can be verified by solving the KKT conditions for problem (EC.6). In particular, letting λt′ denote
the dual variable for the constraint

∑
j∈St′

xjt′ = 1, and µ denote the dual variable for the constraint xit ≤ ξ,
the KKT conditions are given by:

Njt′

xjt′ ·N
= λt′ ∀j ∈ St′ and ∀t′ 6= t; Njt

xjt ·N
= λt ∀j ∈ St \ {i} ; Nit

xit ·N
= λt +µ (Stationarity)
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µ · (xit− ξ) = 0 (Complementary slackness)

µ≥ 0 (Dual feasibility)∑
j∈St′

xjt′ = 1; xjt′ ≥ 0 ∀j ∈ St′ ∀ 1≤ t≤ T (Primal feasibility)

Solving these equations gives the optimal solution mentioned above. Plugging the optimal solution x∗ into
the NLL(·) loss objective, we obtain

Gi,t(ξ) = 1
N
·

−Nit log ξ−
∑

j∈St\{i}

Njt log yjt · (1− ξ)1− yit
−
∑
t′ 6=t

∑
j∈St′

Njt′ log (yjt′)


= 1
N
·

−Nit log ξ−
∑

j∈St\{i}

Njt log (1− ξ)
1− yit

−
∑

j∈St\{i}

Njt log yjt +
∑
t′ 6=t

Nt′ ·H(yt′)


= 1
N
·

(
−Nit log ξ− (Nt−Nit) log 1− ξ

1− yit
+Nit log yit +Nt ·H(yt) +

∑
t′ 6=t

Nt′ ·H(yt′)
)

= Nt

N
·
(
yit log yit

ξ
+ (1− yit) log 1− yit

1− ξ

)
+ 1
N

T∑
t′=1

Nt′ ·H(yt′)

= 1
N
·

(
Nt ·DKL(yit‖ξ) +

T∑
t′=1

Nt′ ·H(yt′)
)

where DKL(yit‖ξ) is the relative entropy between yit and ξ, and H(yt′) is the entropy of vector yt′ .
Claim 3: For each 1≤ t≤ T and any ξ ∈ (0, yt,min], it follows that

min
i∈St

Gi,t(ξ) = 1
N
·

(
Nt ·DKL(yt,min‖ξ) +

T∑
t′=1

Nt′ ·H(yt′)
)
.

This follows since ∂DKL(y‖ξ)
∂y

> 0 for any y > ξ and therefore DKL(yit‖ξ)≥DKL(yt,min‖ξ) for all i∈ St and any
ξ ∈ (0, yt,min].

Now using Claims 1, 2 and 3, it follows that

G(ξ) = min
1≤t≤T

1
N
·

(
Nt ·DKL(yt,min‖ξ) +

T∑
t′=1

Nt′ ·H(yt′)
)

for any 0< ξ ≤ ymin.

where recall that ymin = min1≤t≤T yt,min Given this, it can be verified that:
1. G(ξ) is non-increasing as ξ increases—since we are optimizing over a larger domain.
2. G(ymin) = 1

N

∑T

t′=1Nt′ ·H(yt′)≤ F0
def= NLL(g(0)) for any initialization g(0).

3. G(ξ)→+∞ as ξ→ 0.
The above three facts imply that there exists 0< ξmin ≤ ymin such that

G(ξmin)≤ F0 and G(ξ)>F0 for all 0< ξ < ξmin (EC.7)

This establishes the definition of ξmin provided in the main text.
Given the above, we claim that for each iterate of the CG algorithm g(k), g(k)

min ≥ ξmin. Suppose this is not
the case, i.e. g(k)

min < ξmin for some iterate k. Then, consider the following:

g(k)
min < ξmin =⇒ G(g(k)

min)>F0 {from equation (EC.7) above}

=⇒ NLL(g(k))>F0 = NLL(g(0))
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where the last implication follows since g(k) is feasible for the opt. problem (EC.5) with ξ = g(k)
min and

consequently, NLL(g(k))≥G(g(k)
min). However, this results in a contradiction since the FCFW variant improves

the objective value in each iteration.

Finally, the convergence result follows from choosing η= ξmin in Lemma EC.1.

A.2.3. Proof of Proposition 1. From equation (EC.7), it follows that

G(ξmin)≤ F0 =⇒ min
1≤t≤T

Nt ·DKL(yt,min‖ξmin)≤N ·F0−
T∑
t′=1

Nt′ ·H(yt′).

Now, suppose that min1≤t≤T Nt ·DKL(yt,min‖ξmin) =Nt∗ ·DKL(yt∗,min‖ξmin) for some 1≤ t∗ ≤ T . Then consider

the following:

Nt∗ ·DKL(yt∗,min‖ξmin)≤N ·F0−
T∑
t=1

Nt ·H(yt)

⇐⇒DKL(yt∗,min‖ξmin)≤ N ·F0−
∑T

t=1Nt ·H(yt)
Nt∗

⇐⇒ yt∗,min log yt
∗,min

ξmin
+ (1− yt∗,min) log 1− yt∗,min

1− ξmin
≤
N ·F0−

∑T

t=1Nt ·H(yt)
Nt∗

⇐⇒ yt∗,min log yt
∗,min

ξmin
≤
N ·F0−

∑T

t=1Nt ·H(yt)
Nt∗

+ (1− yt∗,min) log 1− ξmin

1− yt∗,min

=⇒ yt∗,min log yt
∗,min

ξmin
≤
N ·F0−

∑T

t=1Nt ·H(yt)
Nt∗

+ (1− yt∗,min) ·
(

1− ξmin

1− yt∗,min
− 1
)

(since log z ≤ z− 1 ∀ z > 0)

=⇒ yt∗,min log yt
∗,min

ξmin
≤
N ·F0−

∑T

t=1Nt ·H(yt)
Nt∗

+ yt∗,min

⇐⇒ log yt
∗,min

ξmin
≤
N ·F0−

∑T

t=1Nt ·H(yt)
yt∗,min ·Nt∗

+ 1

⇐⇒ yt∗,min

ξmin
≤ exp

(
N ·F0−

∑T

t=1Nt ·H(yt)
yt∗,min ·Nt∗

+ 1
)

⇐⇒ ξmin ≥ yt∗,min · exp
(
−1− N ·F0−

∑T

t=1Nt ·H(yt)
yt∗,min ·Nt∗

)

=⇒ ξmin ≥ ymin · exp
(
−1− N ·F0−

∑T

t=1Nt ·H(yt)
yt∗,min ·Nt∗

)
(since yt∗,min ≥ ymin)

=⇒ ξmin ≥ ymin · exp
(
−1− N ·F0−

∑T

t=1Nt ·H(yt)
Nmin

)
(since yt∗,min ·Nt∗ ≥Nmin)

A.3. Proof of Theorem 2: Characterization of boundary types

In the following, let ‖·‖ denote the standard `2 norm on the Euclidean space. We first establish a few key

lemmas that will be used in the proof.

Lemma EC.2. Let A∈Rm×D and u∈Rm be given, for some m≥ 1. Suppose there exists sequence {ωr}r∈N
such that limr→∞ ‖A ·ωr −u‖2 = 0. Then, u∈Range(A), i.e. u lies in the subspace spanned by the columns

of the matrix A.
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Proof. Suppose that u /∈Range(A) and let u := u‖+ u⊥ where u‖ denote the orthogonal projection of

the vector u onto the subspace Range(A), so that u⊥ is orthogonal to Range(A). Since u /∈Range(A), we

have u⊥ 6= 0. Then, for any r ∈N it follows that

‖A ·ωr −u‖2 =
∥∥(A ·ωr −u‖

)
−u⊥

∥∥2 =
∥∥A ·ωr −u‖

∥∥2 + ‖u⊥‖2 ≥ ‖u⊥‖2 > 0.

But this contradicts the hypothesis of the lemma, and therefore u∈Range(A). �

Lemma EC.3. Let A ∈ Rm×D and u ∈ Rm be given, for some m≥ 1. Suppose that there exists ω ∈ RD

such that ‖A ·ω−u‖< ε for some ε > 0. Let ΠA(ω) denote the orthogonal projection of the vector ω onto the

subspace spanned by the rows of the matrix A. Then, it follows that ‖ΠA(ω)‖ ≤ ε+‖u‖
σmin(A) where σmin(A)> 0 is

the smallest non-zero singular value of the matrix A.

Proof. Let D′ ≤min(m,D) denote the rank of matrix A. Then, using the singular value decomposition

(SVD) of A, we get

A = CΣR>,

where C ∈ Rm×D′ is such that its columns represent an orthonormal basis for the column space of A,

R∈RD×D′ is such that its columns represent an orthonormal basis for the row space of A and Σ∈RD′×D′ is

a diagonal matrix containing the (non-zero) singular values σ1, σ2, . . . , σD′ of the matrix A. Next, represent

the vector ω as ω = θ+ ΠA(ω) where θ represents the component that is orthogonal to the row space. Since

ΠA(ω), by definition, lies in the row space, we can write it as ΠA(ω) = R ·α where α∈RD′ . Then, it follows

that

‖A ·ω−u‖< ε =⇒ ‖A ·ω‖< ε+ ‖u‖ {by (reverse) triangle inequality}

⇐⇒ ‖A ·ΠA(ω)‖< ε+ ‖u‖

(since ω= θ+ ΠA(ω) and A ·θ= 0)

Next, consider the following:

‖A ·ΠA(ω)‖= ‖A · (R ·α)‖

=
∥∥CΣR> · (R ·α)

∥∥ (using SVD of A)

= ‖(CΣ) ·α‖ (since columns of R are orthonormal)

= ‖Σ ·α‖ (since ‖C ·x‖= ‖x‖ for any x as C is unitary)

=

√√√√ D′∑
d=1

σ2
dα

2
d

≥ σmin(A) · ‖α‖

= σmin(A) · ‖R ·α‖ (since R is unitary)

= σmin(A) · ‖ΠA(ω)‖

The claim then follows. �
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Next, w.l.o.g suppose that the product features remain fixed across the offer-sets, i.e. zjt = zjt′ for all

j ∈ [n] and all t 6= t′—if features are varying across offer-sets, we can just expand the product universe [n].

We represent the features as {z1,z2, . . . ,zn} in the remainder.

Let f ∈P \P be any boundary type. Since RM is a metric space, P is precisely the set of the limits of all

convergent sequences in P . Therefore, there exists a sequence {ωr}r∈N ⊂RD such that limr→∞ f(ωr) = f . In

addition, it follows that there exists a permutation π : [n]→ [n] such that there is a subsequence {ωr`
}`∈N

satisfying ω>r`
zπ(1) ≥ ω>r`

zπ(2) ≥ . . . ≥ ω>r`
zπ(n) for all ` ∈ N (this is because the set of permutations of n

elements is finite). Since every subsequence must converge to the same limit, we must have

lim
`→∞

f(ωr`
) = f .

For brevity of notation, we refer to the sequence {ωr`
}`∈N as the sequence {ωr}r∈N in the remainder, and

w.l.o.g assume that the products are indexed such that ω>r z1 ≥ω>r z2 ≥ . . .≥ω>r zn.

We then establish the following key lemma:

Lemma EC.4. Consider any offer-set St. Let it = arg minj∈St
j, i.e. it is the product with the minimum

index in St. For any j ∈ St, it follows that

1. If fjt = 0, then limr→∞ω
>
r (zit − zj) = +∞.

2. If fjt > 0, then limr→∞ω
>
r (zit − zj) = uitj ≥ 0 for some finite uitj.

Proof. Note that since ω>r zit ≥ω>r zj for all r ∈N, it follows that fitt ≥ fjt for all j ∈ St. Further, note

that fitt > 0 otherwise fjt = 0 for all j ∈ St which is a contradiction since choice probabilities within each

offer-set must sum to 1. Now for any j ∈ St, consider the following:

exp
(
ω>r (zj − zit)

)
= fjt(ωr)
fitt(ωr)

=⇒ lim
r→∞

exp
(
ω>r (zj − zit)

)
= lim
r→∞

fjt(ωr)
fitt(ωr)

= limr→∞ fjt(ωr)
limr→∞ fitt(ωr)

= fjt
fitt

.

From the above, it follows that if fjt = 0, then limr→∞ exp
(
ω>r (zj − zit)

)
= 0 or equivalently, limr→∞ω

>
r (zj−

zit) =−∞. When fjt > 0, then since log(·) is continuous, it follows that limr→∞ω
>
r (zj − zit) = log fjt

fitt
≤ 0

because fjt ≤ fitt for all j ∈ St. The claim then follows.

Finally, note that the same pair of products (i, j) could appear in two different offer-sets, but the uniqueness

of limits ensures that the sequence ω>r (zi− zj) will converge to the same quantity in both cases. �

We are now ready to prove the result. We first need some additional notation. Let Pairst ={
(it, j) | j ∈ St \ {it} and limr→∞ω

>
r (zit − zj)<∞

}
, note that Pairst could be empty for any 1≤ t≤ T . Denote

Pairs = ∪Tt=1Pairst. Similarly, define the set Pairst =
{

(it, j) | j ∈ St \ {it} and limr→∞ω
>
r (zit − zj) = +∞

}
and denote Pairs = ∪Tt=1Pairst. Note that Pairst could also be empty for some t ∈ [T ], but we make the

following claim:

Claim 1:

∃t′ ∈ [T ] such that Pairst′ 6= ∅.
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Suppose this is not true, so that Pairs = ∪Tt=1Pairst = ∅. This means that Pairs 6= ∅ since, by definition,
each product pair must belong to either Pairs or Pairs. Then, construct the matrix APairs ∈R|Pairs|×D where
row aPairs

ij corresponding to pair (i, j)∈Pairs is given by aPairs
ij = zi− zj . Similarly, let u∈R|Pairs| denote the

vector of utilities uij for each pair (i, j)∈Pairs (refer to Lemma EC.4). Then, it follows from Lemma EC.4
that for any (i, j)∈Pairs:

lim
r→∞

ω>r (zi− zj)−uij = 0 =⇒ lim
r→∞

(
ω>r (zi− zj)−uij

)2 = 0 (since x2 is continuous at x= 0)

which in turn implies that limr→∞
∥∥APairs ·ωr −u

∥∥2 = 0.
Now, applying Lemma EC.2 tells us that u∈Range(APairs), i.e. there exists ω0 ∈RD such that APairs ·ω0 = u.

Then, from Lemma EC.4 it follows that for any j ∈ St and any 1≤ t≤ T :

fjt = exp (−uitj) · fitt (since fjt > 0)

= exp
(
ω>0 (zj − zit)

)
· fitt

(
since uitj = (zit − zj)>ω0 as shown above

)
=⇒ fjt =

exp
(
ω>0 (zj − zit)

)
1 +

∑
`∈St\{it} exp (ω>0 (z`− zit))

(since
∑
`∈St

f`t = 1)

⇐⇒ fjt =
exp

(
ω>0 zj

)∑
`∈St

exp (ω>0 z`)
= fjt(ω0)

That is, f = f(ω0). But since f(ω0)∈P by definition, this means that f ∈P which contradicts the assumption
that f is a boundary type and belongs to P \P. The claim then follows.

In addition, if Pairst′ 6= ∅, then for any pair (it′ , j′) ∈ Pairst′ , it follows from Lemma EC.4 that fj′t′ = 0
establishing the second part of the theorem.

Following Claim 1, there are two cases which we deal with separately:
Case 1: Pairs = ∅. In this case, it follows from Lemma EC.4 that fitt = 1 for all 1≤ t≤ T , which implies

that f is a boundary type that chooses only a single product, viz. it from each offer-set St. Choose any U > 0.
Based on the definition of Pairs, we know that there exists ω̃ such that ω̃>(zī− zj̄)>U for all (̄i, j̄)∈Pairs.
Then, it follows that the choice probabilities under the boundary type f are equal to the limiting choice
probabilities using ω0 = 0 (i.e. the all zeros vector) and θ= ω̃.

Case 2: Pairs 6= ∅. In this case, first we construct the matrix APairs ∈R|Pairs|×D as outlined above in the
proof of Claim 1. Given this, we choose the parameters (ω0,θ) as follows:

Choosing ω0. As shown in the proof of Claim 1 above, it follows that limr→∞
∥∥APairs ·ωr −u

∥∥2 = 0. Then,
Lemma EC.2 tells us that u∈Range(APairs), i.e. there exists ω0 ∈RD such that APairs ·ω0 = u.

Choosing θ. Next, using the definition of Pairs and Pairs, it follows that given any ε > 0 and U > 0, there
exists ω̃ such that:∣∣ω̃>(zi− zj)−uij

∣∣< ε ∀ (i, j)∈Pairs and ω̃>(zī− zj̄)>U ∀ (̄i, j̄)∈Pairs.

Fix some ε > 0 and choose U such that

U >

√
|Pairs| · ε+ ‖u‖
σmin(APairs) ·B,

where B def= max(̄i,j̄)∈Pairs

∥∥zī− zj̄
∥∥.
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Then, the choice of ω̃ implies that
∥∥APairs · ω̃−u

∥∥<√|Pairs| · ε so that we can apply Lemma EC.3 to
establish

‖ΠAPairs(ω̃)‖<
√
|Pairs| · ε+ ‖u‖
σmin(APairs) . (EC.8)

Next, choose θ= ω̃−ΠAPairs(ω̃) where ΠAPairs(ω̃) is the projection of ω̃ onto the subspace spanned by the
rows of APairs. We show that θ satisfies:

(1) θ>(zi− zj) = 0 ∀ (i, j)∈Pairs and (2) θ>(zī− zj̄)> 0 ∀ (̄i, j̄)∈Pairs.

Part (1) follows since θ is orthogonal to the subspace spanned by the rows of APairs. For part (2), consider
the following, for any (̄i, j̄)∈Pairs:

ω̃>(zī− zj̄)>U

⇐⇒ (θ+ ΠAPairs(ω̃))> (zī− zj̄)>U

⇐⇒ θ>(zī− zj̄) + ΠAPairs(ω̃)>(zī− zj̄)>U

=⇒ θ>(zī− zj̄) + ‖ΠAPairs(ω̃)‖ ·
∥∥zī− zj̄

∥∥>U (using Cauchy-Schwarz inequality)

⇐⇒ θ>(zī− zj̄)>U −‖ΠAPairs(ω̃)‖ ·
∥∥zī− zj̄

∥∥
=⇒ θ>(zī− zj̄)>U −‖ΠAPairs(ω̃)‖ ·B

(
since

∥∥zī− zj̄
∥∥≤B by definition of B

)
=⇒ θ>(zī− zj̄)>U −

√
|Pairs| · ε+ ‖u‖
σmin(APairs) ·B {using equation (EC.8)}

=⇒ θ>(zī− zj̄)> 0 (by choice of U)

Then, it is easy to see that the choice probabilities under the boundary type f are equal to the limiting
probabilities for the choice (ω0,θ) computed above.

A.4. Proof of Theorem 3: Recovery of boundary types

Define the function H :P →R such that H(f) =
∑n

i=1 cifi for each f ∈P. Consequently, the support finding
step (11) can be equivalently written as:

arg max
f∈P

H(f) (EC.9)

Let C∗ = maxf∈PH(f) denote the optimal objective of the above subproblem, note that this is well-defined
since H(·) is continuous and P is compact.

Proof Overview. Without loss of generality, index the products such that c1 ≥ c2 ≥ · · · ≥ cn. Note that
C∗ ≤ c1 because the objective value in subproblem (EC.9) is a convex combination of {c1, c2, · · · , cn}. Since
z1 is an extreme point, it follows from Lemma EC.6 (proved below) that e1 ∈P, where e1 is defined as:

e1i =
{

1 if i= 1
0 otherwise.

Then it follows that
H(e1) =

n∑
i=1

cie1i = c1.

In addition, Lemma EC.5 below shows the existence of θ1 ∈RD such that θ>1 z1 > θ
>
1 zi for all 1< i≤ n.

Then, it is easy to see that e1 = f(0,θ1) from which the result follows.
To complete the proof, we now establish the two lemmas referenced above. The first provides a characteri-

zation of extreme points of the polytope Zn:
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Lemma EC.5 (Characterization of extreme points). zj is an extreme point of the polytope Zn if and
only if there exists θ ∈RD such that θ>zj > θ

>zi for all i 6= j.

Proof. “if” direction. If possible, suppose that zj is not an extreme point, i.e. zj ∈
conv({zi : i 6= j,1≤ i≤ n}) so that there exists coefficients λij ≥ 0 such that

zj =
∑
i6=j

λijzi ;
∑
i 6=j

λij = 1 ; λij ≥ 0 ∀ i 6= j.

But this results in the following contradiction:

zj =
∑
i6=j

λijzi =⇒ θ>zj =
∑
i 6=j

λijθ
>zi

=⇒ θ>zj <
∑
i 6=j

λijθ
>zj (since λij > 0 for some i)

=⇒ θ>zj < θ
>zj ·

(∑
i 6=j

λij

)
=⇒ θ>zj < θ

>zj

“only if” direction. DenoteM= conv({zi : i 6= j,1≤ i≤ n}) and observe thatM is a closed, convex and
proper subset of RD. Now since zj /∈M, it follows from the (strong) separation theorem in convex analysis
that there exists θ ∈RD such that

θ>zj > θ
>zi ∀ i 6= j.

�

Next, we show that for each product feature vector that is an extreme point, there exists a boundary type
that chooses the product with probability 1 from offer-set [n]:

Lemma EC.6. Suppose zj is an extreme point of the polytope Zn. Define the vector ej = (ej1, ej2, . . . , ejn)
as follows:

eji =
{

1 if i= j

0 otherwise.

Then ej ∈ P, in other words, there exists a boundary type that chooses product j with probability 1 from
offer-set [n].

Proof. Since zj is an extreme point, it follows from Lemma EC.5 that

∃θ ∈RD s.t. θ>zj > θ
>zi ∀i 6= j.

Consider the sequence {r ·θ}r∈N ⊆RD. For any i 6= j, note that:

lim
r→∞

fi(r ·θ) = lim
r→∞

exp (r ·θ>zi)∑n

`=1 exp (r ·θ>z`)
= lim
r→∞

exp (−r · (θ>zj −θ>zi))
1 +

∑
6̀=j exp (−r · (θ>zj −θ>z`))

= 0
1 + 0 = 0.

An analogous argument shows that

lim
r→∞

fj(r ·θ) = lim
r→∞

exp (r ·θ>zj)∑n

`=1 exp (r ·θ>z`)
= 1.

From the above statements it follows that

lim
r→∞

f(r ·θ) = ej ,

and since the closure contains all limit points of convergent sequences, it follows that ej ∈P. �
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A.5. Proof of Theorem 4: Convergence in finite number of iterations

Since each zj is an extreme point, it follows from Lemma EC.6 that e1,e2, . . . ,en ∈P. Then it follows that
y ∈ conv(P) since y =

∑n

i=1 yi · ei and
∑n

i=1 yi = 1. Further, it is easy to see that SQ(y) = 0 and SQ(g)> 0
for all g 6= y. Similarly, we have that NLL(y) =−

∑n

i=1 yi log yi and it can be shown that NLL(g)>NLL(y)
for all g 6= y (using the fact that relative entropy or KL-divergence is non-negative). Therefore g∗ = y for
both the squared and negative log-likelihood loss functions.

Now, if at some iteration 1≤ k≤ n, we have
〈
∇loss(g(k−1)),f (k)−g(k−1)

〉
≥ 0, then by convexity it follows

that loss(g)≥ loss(g(k−1)) for all g ∈ conv(P) which means that g(k−1) = g∗ and the algorithm terminates.
So, suppose that

〈
∇loss(g(k−1)),f (k)−g(k−1)

〉
< 0 for each 1≤ k ≤ n, which means that f (k) − g(k−1) is a

descent direction and an improving solution can be found. The proportions update step in Algorithm 1 ensures
that we have f (k1) 6= f (k2) in any two iterations k1 6= k2 (since it optimizes over all previously found types). In
addition, Theorem 3 shows that we recover only boundary types in each iteration, from which it follows that
at the end of n iterations, we have found the types e1,e2, · · · ,en. Now, clearly

∑n

i=1 yi · ei = y = g∗ and since
the proportions update step optimizes over the convex hull of all previously found types, the claim follows.

A.6. Proof of Theorem 5: Boundary types are always optimal

If D1 = 0, i.e. all product features are binary, then it follows that E =∪n`=1 {`}, i.e. each product ` belongs
to its own equivalence class. Then, treating the feature vectors {b`}`∈[n] as elements of RD, it follows that
each b` is an extreme point of the polytope Zn = conv({b1, · · · ,bn}). Therefore, we can apply the result of
Corollary 1 to establish that in each iteration, the optimal solution to the support finding step is a boundary
type that chooses only a single product. Further, choosing ω0 = 0 and θ as in Theorem 3, the claim follows.

Now, we consider the scenario when D1 > 0. For ease of exposition, we prove the result for the case when
D2 = 1, i.e. there is only a single binary feature but the proof can be easily extended, albeit with additional
notation, to the general case. Define the function G(·) : RD1+1→R for ω ∈RD1 and δ ∈R as:

G(ω, δ) =
∑n

i=1 ci exp (ω>zi + δ · bi)∑n

j=1 exp (ω>zj + δ · bj)
.

Further, let G∗ = supω∈RD1 ,δ∈RG(ω, δ); since G(·) is bounded above, G∗ is finite. We denote the atomic
likelihood vector corresponding to logit parameter (ω, δ) as f (ω,δ) so that the the set of atomic likelihood
vectors is given by P =

{
f (ω,δ) : ω ∈RD1 , δ ∈R

}
.

Let S0 be the set of products that have the binary feature absent, i.e. S0 = {i∈ [n] : bi = 0} and let S1 =
[n] \S0. For e ∈ {0,1}, define the sets Pe =

{
f (e)(ω) : ω ∈RD1

}
⊆∆|Se|−1, where f (e)(ω) =

(
f

(e)
i (ω)

)
i∈Se

and
f

(e)
i (ω) = exp (ω>zi)∑

j∈Se
exp (ω>zj)

(EC.10)

In other words, P0 (resp. P1) corresponds to choice probabilities under boundary types that do not consider
any product in S1 (resp. S0). Let f (0),f (1) denote arbitrary elements in P0 and P1 where P0 and P1 denote
the closures of the sets P0 and P1 respectively. Then, consider the following optimization problems for
e∈ {0,1}:

(Pe) : arg max
f(e)∈Pe

He(f (e)),
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where He :Pe→R is such that He(f (e)) =
∑

i∈Se
cif

(e)
i .

Next, for any ω ∈RD1 , define the following:

a0(ω) =
∑
j∈S0

cj exp (ω>zj); b0(ω) =
∑
j∈S0

exp (ω>zj); G0(ω) = a0(ω)
b0(ω) .

a1(ω) =
∑
j∈S1

cj exp (ω>zj); b1(ω) =
∑
j∈S1

exp (ω>zj); G1(ω) = a1(ω)
b1(ω) .

Further, let C∗(0) = supω∈RD1 G0(ω) and similarly, C∗(1) = supω∈RD1 G1(ω). Also, recall from the beginning of
Appendix A.4 that C∗ = maxf∈PH(f).

Claim 1:
(1)C∗ =G∗; (2)C∗(0) = max

f(0)∈P0

H0(f (0)) and C∗(1) = max
f(1)∈P1

H1(f (1)).

Consider part (1). First observe that, G(ω, δ) =H
(
f (ω,δ)

)
≤C∗ for all ω ∈RD1 , δ ∈R. As supremum is the

least upper bound, it follows that G∗ ≤C∗. Next, for any f ∈P , there exists a sequence {(ωr, δr)}r∈N ⊂RD1+1

such that limr→∞ f (ωr ,δr) = f . Then, since H(·) is continuous, it follows that

f = lim
r→∞

f (ωr ,δr) =⇒ H(f) = lim
r→∞

H
(
f (ωr ,δr)

)
= lim
r→∞

G(ωr, δr)≤G∗,

where the last inequality follows since G(ωr, δr)≤G∗ for all r ∈N. Since f ∈P was arbitrary, this means that
H(f)≤G∗ for all f ∈P. Finally, since H(·) is continuous and P is compact, there exists f∗ ∈P such that
H(f∗) =C∗. This means that C∗ =H(f∗)≤G∗ and combining with G∗ ≤C∗, the result of part (1) follows.

The above argument can be repeated while restricting to the domains P0 and P1 to establish part (2). The
claim then follows.

Claim 2:
C∗ ≤max(C∗(0),C

∗
(1)).

Proof. First observe that for any ω ∈RD1 and δ ∈R:

G(ω, δ) =
∑n

i=1 ci exp (ω>zi + δ · bi)∑n

j=1 exp (ω>zj + δ · bj)

=G0(ω) · b0(ω)
b0(ω) + eδ · b1(ω) +G1(ω) · eδ · b1(ω)

b0(ω) + eδ · b1(ω) .

That is, G(ω, δ) is a convex combination of G0(ω) and G1(ω) and consequently we have

∀ω ∈RD1 ,∀δ ∈R G(ω, δ)≤max (G0(ω),G1(ω))≤max(C∗(0),C
∗
(1)),

where the last inequality follows from the definition of C∗(0) and C∗(1). The claim then follows from the definition
of supremum and the fact that G∗ =C∗ (from Claim 1 above). �

Given Claims 1 and 2 above, there are two cases to consider: C∗(1) ≥C∗(0) or C∗(1) <C
∗
(0). We focus on the

case when C∗(1) ≥C∗(0), the other case can be dealt with a symmetric argument:
Case 1: C∗(1) ≥C∗(0). For each ω ∈RD1 , define the vector f̃(ω)∈∆n−1 as follows:

f̃j(ω) =
{
f

(1)
j (ω) if j ∈ S1

0 otherwise,
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where f (1)(ω)∈P1 is as defined above in equation (EC.10).

Claim 3:
f̃(ω)∈P ∀ω ∈RD1 .

Given any ω ∈RD1 , consider the sequence {(ω, r)}r∈N ⊂RD1+1. Now for any i∈ S0, it follows that

lim
r→∞

f(ω,r),i = lim
r→∞

exp (ω>zi + r · bi)∑n

`=1 exp (ω>z` + r · b`)

= lim
r→∞

exp (ω>zi)∑
j∈S1

exp (ω>zj + r) +
∑

`∈S0
exp (ω>z`)

= 0.

Similarly, for any j ∈ S1, it follows that

lim
r→∞

f(ω,r),j = lim
r→∞

exp (ω>zj + r · bj)∑n

`=1 exp (ω>z` + r · b`)
= exp (ω>zj)∑

`∈S1
exp (ω>z`)

= f
(1)
j (ω).

From the above statements, it follows that

lim
r→∞

f (ω,r) = f̃(ω) =⇒ f̃(ω)∈P,

where the implication follows since P contains the limit of all convergent sequences in P.
Claim 4:

C∗ =C∗(1).

Proof. From Claim 3, it follows that f̃(ω)∈P for all ω ∈RD1 . Then, consider the following:

C∗ ≥H
(
f̃(ω)

)
=

n∑
`=1

c`f̃`(ω) =
∑

j∈S1
cj exp (ω>zj)∑

`∈S1
exp (ω>z`)

=G1(ω).

where the first inequality follows from the definition of C∗. Then, it follows that

G1(ω)≤C∗ ∀ω ∈RD1 =⇒ C∗(1) ≤C∗ (since C∗(1) is the supremum).

Combining with Claim 2, it follows that C∗ =C∗(1). �

Next, let f (1,∗) ∈P1 denote the optimal solution for problem (P1). Then, using the arguments given in the
proof of Theorem 2 above, it follows that there exists ω(1)

0 ,θ(1) ∈RD1 such that f (1,∗) = f (1)(ω(1)
0 ,θ(1)) where

f (1)(ω(1)
0 ,θ(1)) are the limiting choice probabilities given by (if f (1,∗) > 0, then we choose θ(1) = 0):

f
(1,∗)
j = f

(1)
j (ω(1)

0 ,θ(1)) = lim
r→∞

exp
{

(ω(1)
0 + r ·θ(1))>zj

}
∑

`∈S1
exp

{
(ω(1)

0 + r ·θ(1))>z`

} ∀ j ∈ S1. (EC.11)

Define ω0 = ω
(1)
0 ◦ (0) where recall that ◦ denotes the concatenation operator, and θ = θ(1) ◦ (θ1) with

θ1 =
√

5 ·
∥∥θ(1)

∥∥ ·Zmax, where Zmax is a constant that satisfies Zmax ≥ ‖z`‖ for all `∈ [n]. Then, we can show
the following:

Claim 5:

(1) θ>(zj ◦ bj − zi ◦ bi)> 0 ∀ j ∈ S1,∀ i∈ S0.

(2) fi(ω0,θ) = 0 ∀ i∈ S0.

(3) fj(ω0,θ) = f
(1,∗)
j ∀ j ∈ S1.
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Proof. We start with part (1). Consider any j ∈ S1 and any i∈ S0, then it follows

θ>(zj ◦ bj − zi ◦ bi)> 0 ⇐⇒ θ>(zj ◦ 1− zi ◦ 0)> 0

⇐⇒ θ(1)>(zj − zi) + θ1 > 0

⇐=−
∥∥θ(1)∥∥ · ‖zj − zi‖+ θ1 > 0 (by Cauchy-Schwarz inequality)

⇐⇒ θ1 >
∥∥θ(1)∥∥ · ‖zj − zi‖

⇐= θ1 >
∥∥θ(1)∥∥ · (‖zi‖+ ‖zj‖) (by triangle inequality)

⇐= θ1 > 2 ·
∥∥θ(1)∥∥ · max

1≤`≤n
‖z`‖

⇐= θ1 > 2 ·
∥∥θ(1)∥∥ ·Zmax

and the last inequality is true by the choice of θ1.
Next, for part (2) consider the following, given any i∈ S0:

0≤ fi(ω0,θ) =
exp

{
(ω0 + r ·θ)>(zi ◦ 0)

}∑n

`=1 exp{(ω0 + r ·θ)>(z` ◦ b`)}

≤
exp

{
(ω0 + r ·θ)>(zi ◦ 0)

}∑
`∈S1

exp{(ω0 + r ·θ)>(z` ◦ b`)}

= exp (ω(1)
0
>
zi)∑

`∈S1
exp

{
ω

(1)
0
>
z` + r ·θ> (z` ◦ b`− zi ◦ 0)

}
Then using the Squeeze theorem and part (1), it follows that limr→∞ fi(ω0,θ) = 0.

Finally, for part (3), consider the following for any j ∈ S1:

fj(ω0,θ)

= lim
r→∞

exp
{

(ω0 + r ·θ)>(zj ◦ 1)
}∑n

`=1 exp{(ω0 + r ·θ)>(z` ◦ b`)}

= lim
r→∞

exp
{
ω

(1)
0
>
zj

}
∑

`∈S1
exp

{
ω

(1)
0
>
z` + r ·θ(1)>(z`− zj)

}
+
∑

i∈S0
exp

{
ω

(1)
0
>
zi + r ·θ> (zi ◦ bi− zj ◦ bj)

}
= lim
r→∞

exp
{
ω

(1)
0
>
zj

}
∑

`∈S1
exp

{
ω

(1)
0
>
z` + r ·θ(1)>(z`− zj)

}
+
∑

i∈S0
0

(from part (1) of Claim 5)

= f
(1,∗)
j (from equation (EC.11))

�

Having proved Claim 5, it follows that

H (f(ω0,θ)) =
∑
j∈S1

cjf
(1,∗)
j =C∗(1) =C∗,

where the second last equality follows since f (1,∗) is an optimal solution to problem (P1) and the last follows
from Claim 4 above. This shows that f(ω0,θ) is the optimal solution to the support finding step, which
establishes the result.

Case 2: C∗(0) >C∗(1). A symmetric argument from above shows C∗ = C∗(0) in this case. In addition, if
f (0,∗) = f (0)(ω(0)

0 ,θ(0)) denotes the optimal solution to problem (P0), where ω(0)
0 ,θ(0) ∈RD1 are computed
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using the procedure in the proof of Theorem 2, then choosing ω0 = ω
(0)
0 ◦ (0) and θ = θ(0) ◦ (θ0) with

θ0 =−
√

5 ·
∥∥θ(0)

∥∥ ·Zmax, it follows that

(1) θ>(zi ◦ bi− zj ◦ bj)> 0 ∀ j ∈ S1,∀ i∈ S0.

(2) fj(ω0,θ) = 0 ∀ j ∈ S1.

(3) fi(ω0,θ) = f
(0,∗)
i ∀ i∈ S0.

and in addition,

H (f(ω0,θ)) =
∑
i∈S0

cif
(0,∗)
i =C∗(0) =C∗,

so that the optimal solution is f(ω0,θ) which is a boundary type that only considers products in S0. �

In the general case, when there is more than one binary feature, the above sequence of arguments shows

that C∗ = C∗(e∗) for some e∗ ∈ E , so that the optimal solution corresponds to a boundary type that only

considers products in the subset Se∗ . Further, if f (e∗,∗) = f (e∗)(ω(e∗)
0 ,θ(e∗)) denotes the optimal solution to

problem (Pe), then choosing

ω0 =ω(e∗)
0 ◦ (0,0, . . . ,0)︸ ︷︷ ︸

D2 times

and θ= θ(e∗) ◦θe ; θe =
√

5 ·
∥∥∥θ(e∗)

∥∥∥ ·Zmax ·
(

2 ·be∗ − (1,1, . . . ,1)︸ ︷︷ ︸
D2 times

)
,

where be∗ ∈ {0,1}D2 is the binary feature vector for products in the equivalence class Se∗ , it follows that

(1) θ>(zj ◦ bj − zi ◦ bi)> 0 ∀ j ∈ Se∗ ,∀ i∈ [n] \Se∗ .

(2) fi(ω0,θ) = 0 ∀ i /∈ Se∗ .

(3) fj(ω0,θ) = f
(e∗,∗)
j ∀ j ∈ Se∗ ,

which implies that

H (f(ω0,θ)) =
∑
j∈Se∗

cjf
(e∗,∗)
j =C∗(e∗) =C∗,

so that the optimal solution to the support finding step is f(ω0,θ) which is a boundary type that only considers

products in Se∗ .

Appendix B: Details of Numerical Experiments

B.1. Synthetic datasets

For the experiments in Sections 6 and 8—since the goal is to recover the underlying mixing distribution—we

employ the standard BFGS solver (Nocedal and Wright 2006) to compute a candidate solution for the support

finding step, which was enough to obtain an improving objective value in each iteration. Since the subproblem

in the support finding step is nonconvex, we run the BFGS solver from 20 different (randomly chosen) starting

values to ensure that we sufficiently explore the parameter space, and choose the solution which obtains the

best objective.
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Table EC.1 Recovery metrics as function of number of iterations for ground-truth mixing distribution Q(2)

IAE No. of mixture components

T Kmax RMISE Mean Minimum Maximum Mean Minimum Maximum

2,000 9 0.11 0.058 0.0418 0.087 8.4 7 9
2,000 16 0.0757 0.0403 0.0283 0.0565 12.6 10 15
2,000 25 0.0688 0.0386 0.0216 0.0541 18.8 15 22
2,000 36 0.066 0.0379 0.025 0.0546 26.2 22 31
2,000 49 0.0662 0.038 0.0244 0.0539 36 31 41
2,000 64 0.0667 0.0384 0.0242 0.0531 48.1 43 55
2,000 81 0.0674 0.0388 0.0252 0.0535 62 55 70

5,000 9 0.1058 0.0547 0.0442 0.088 8.3 7 9
5,000 16 0.0718 0.0371 0.0255 0.0471 12.4 10 16
5,000 25 0.0616 0.0342 0.0259 0.0493 18.6 16 21
5,000 36 0.0534 0.0304 0.0208 0.05 26.4 22 30
5,000 49 0.0519 0.0298 0.0188 0.0515 35.8 31 41
5,000 64 0.0521 0.03 0.0179 0.0517 48.1 43 53
5,000 81 0.0526 0.0303 0.0189 0.0515 62.3 56 68

10,000 9 0.0927 0.0482 0.0433 0.0852 8.1 7 9
10,000 16 0.0716 0.0359 0.0244 0.042 12.2 10 15
10,000 25 0.0592 0.0315 0.0207 0.041 18.5 16 22
10,000 36 0.0476 0.0266 0.0197 0.0343 25.9 21 30
10,000 49 0.0418 0.0243 0.0178 0.0316 35.9 32 41
10,000 64 0.0403 0.0238 0.0171 0.0303 47.4 40 53
10,000 81 0.04 0.0237 0.0177 0.0305 61.4 54 67

Here, we report a more comprehensive set of results for the experiments in Section 6. Apart from the
RMISE metric that was defined in the main text, we also compute the IAE metric for each replication as
follows:

IAEr = 1
V

V∑
v=1

∣∣∣F̂r(βv)−F0(βv)
∣∣∣

Then, in addition to the MIAE (mean IAE), we also compute the minimum: minr IAEr and maximum:
maxr IAEr across the R= 50 replications. Since the number of iterations only provides an upper bound on
the number of mixture components recovered by the CG-based estimator, we also compute the minimum,
mean and maximum number of mixture components in the recovered mixing distribution across the different
replications. Tables EC.1, EC.2 and EC.3 reports these metrics as a function of the number of iterations of
the CG algorithm—these tables are similar in structure to Tables 1 & 2 in Fox et al. (2011). Comparing with
the metrics reported by Fox et al. we see that our method outperforms their estimator as the ground-truth
distribution becomes more complex, i.e. for mixing distributions Q(4) and Q(6). For Q(2), our estimator
performs worse probably because of overfitting—as the number of periods T increases, our estimates improve
and the performance gap decreases .

Additional results. We also report the performance of our estimator for two additional ground-truth
mixing distributions: (a) a bivariate normal Q(1) =N ([3,−1],Σ1), and (b) LC-MNL model with K = 6 classes,
say D(6), having proportions α1 = 0.1, α2 = 0.2, α3 = 0.2, α4 = 0.1, α5 = 0.3, α6 = 0.1 and logit parameters
ω1 = [3,0],ω2 = [0,3],ω3 = [1,−1],ω4 = [−1,1],ω5 = [2,1],ω6 = [1,2]. For Q(1), we compare our performance
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Table EC.2 Recovery metrics as function of number of iterations for ground-truth mixing distribution Q(4)

IAE No. of mixture components

T Kmax RMISE Mean Minimum Maximum Mean Minimum Maximum

2,000 9 0.1411 0.0716 0.043 0.1134 8.9 8 9
2,000 16 0.0755 0.0412 0.0262 0.0582 14.2 11 16
2,000 25 0.067 0.0365 0.0207 0.0594 20.4 17 24
2,000 36 0.0656 0.0361 0.0224 0.0581 27.7 24 32
2,000 49 0.0662 0.0363 0.0228 0.0589 37.2 32 42
2,000 64 0.067 0.0366 0.0223 0.0585 48.5 41 55
2,000 81 0.0674 0.0369 0.022 0.0585 61.8 54 69

5,000 9 0.118 0.0614 0.0411 0.0877 9 8 9
5,000 16 0.0701 0.0383 0.0301 0.0488 14.4 12 16
5,000 25 0.0568 0.0316 0.022 0.0422 20.3 16 24
5,000 36 0.0523 0.0295 0.0181 0.0461 28 24 34
5,000 49 0.0509 0.0288 0.0161 0.0454 37.6 31 43
5,000 64 0.0508 0.0288 0.0145 0.0457 49.1 44 56
5,000 81 0.051 0.0289 0.0145 0.0444 62.9 58 71

10,000 9 0.1174 0.0621 0.0464 0.0895 9 8 9
10,000 16 0.0687 0.0359 0.0258 0.0522 13.9 12 16
10,000 25 0.0543 0.0283 0.0199 0.0386 20.1 17 23
10,000 36 0.0479 0.0255 0.0194 0.0339 28 24 32
10,000 49 0.0436 0.0237 0.0173 0.0317 38.2 34 44
10,000 64 0.0427 0.0233 0.0173 0.0328 49.6 45 57
10,000 81 0.0422 0.0232 0.0179 0.0333 63.4 58 68

Table EC.3 Recovery metrics as function of number of iterations for ground-truth mixing distribution Q(6)

IAE No. of mixture components

T Kmax RMISE Mean Minimum Maximum Mean Minimum Maximum

2,000 9 0.1443 0.07 0.0524 0.109 8.9 8 9
2,000 16 0.0734 0.0389 0.0236 0.0584 14.7 12 16
2,000 25 0.0661 0.035 0.0211 0.0522 20.8 17 23
2,000 36 0.0641 0.0342 0.0207 0.053 28.2 24 32
2,000 49 0.065 0.0347 0.021 0.054 37.8 32 42
2,000 64 0.0657 0.035 0.0218 0.0557 49.9 43 56
2,000 81 0.0662 0.0354 0.022 0.0562 63.7 57 70

5,000 9 0.1402 0.068 0.052 0.0928 9 8 9
5,000 16 0.0704 0.0365 0.0234 0.0455 14.7 12 16
5,000 25 0.0587 0.0299 0.0225 0.0389 21.1 18 24
5,000 36 0.0537 0.0276 0.0187 0.0355 28.9 24 32
5,000 49 0.0529 0.0272 0.0153 0.0368 38.2 33 42
5,000 64 0.053 0.0274 0.015 0.0356 50 44 55
5,000 81 0.0533 0.0276 0.0158 0.0354 63.7 57 70

10,000 9 0.1386 0.0673 0.0517 0.082 9 8 9
10,000 16 0.0691 0.0354 0.025 0.0456 14.3 12 16
10,000 25 0.052 0.0262 0.0187 0.0345 20.6 16 24
10,000 36 0.0434 0.0227 0.0164 0.0305 28.3 23 32
10,000 49 0.0401 0.0213 0.0149 0.027 38.4 31 42
10,000 64 0.0397 0.0211 0.0145 0.0268 50.4 42 54
10,000 81 0.0396 0.0211 0.015 0.0266 64.1 53 70
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Table EC.4 Error metrics as a function of the number of periods T

RMISE MIAE

Q(1) D(6) Q(1) D(6)

T Normal NP-CG LC-MNL (EM) NP-CG Normal NP-CG LC-MNL (EM) NP-CG

2,000 0.044 0.082 0.064 0.086 0.013 0.033 0.025 0.042
5,000 0.031 0.065 0.063 0.079 0.009 0.025 0.024 0.038
10,000 0.028 0.053 0.062 0.077 0.008 0.020 0.024 0.037

Q(1) and D(6) refer to the bivariate normal and the LC-MNL ground-truth mixing distributions
respectively. “Normal”, “NP-CG” and “LC-MNL (EM)” correspond respectively to the RPL model
with a bivariate mixing distribution, our nonparametric CG-based estimator, and the LC-MNL model
estimated using the EM algorithm.

with the RPL model, whereas for the D(6) ground-truth, the benchmark is an LC-MNL model with K = 6
classes fit using the EM algorithm—note that the benchmark is provided the knowledge of the true number
of classes.

Table EC.4 reports the RMISE and MIAE metrics (defined in the main text) as a function of the number of
periods T . We first discuss the results for the ground-truth Q(1). Since there is no model misspecification, the
RPL model performs very well and also recovers better approximations of the ground-truth as the number
of samples, T , increases. In particular, for T = 10,000 periods, the average (across all replications) mean
vector obtained by the RPL estimator was [2.95,−0.89], pretty close to the true mean [3,−1]. Our method
performs worse but is able to improve its estimate of the ground-truth as T increases, and becomes closer
to the RPL estimator. Considering the support of the recovered mixing distribution within the rectangle
[−6,6]× [−6,6]—over which the RMISE and MIAE metrics are computed—the average mean vector (for
T = 10,000 periods) obtained by our method was [2.61,−0.86].

For the D(6) ground-truth, the LC-MNL model estimated using the EM algorithm outperforms our proposed
estimator. Again, this is expected since the benchmark knows the true number of latent classes in the
underlying mixing distribution. Since our method does not have this information a priori, we let the CG
algorithm run for Kmax = 16 iterations and use the mixture model so obtained to compute the metrics. The
average support size in the mixing distribution recovered by our method was 12.6. Under this scenario, the
ground-truth mean vector is [1.1,1.0] and the mean vectors obtained (for T = 10,000 periods) using the EM
and CG algorithms are [0.99,0.83] and [0.91,0.76] respectively. Here again, when computing the mean vector
for our method, we only focus on the support within [−6,6]× [−6,6].

B.2. SUSHI dataset

As described in the main text, there were two kinds of sushi varieties—maki and non-maki, represented
using a single binary feature. Let Smaki and Snon−maki refer to the two kinds of sushi varieties so that
[n] = Smaki∪Snon−maki. Let zi ∈R4 denote the remaining (non-binary) features for each sushi variety i∈ [n] and
let Zmaki and Znon−maki denote the convex polytope w.r.t. to these features for both sushi types respectively
(similar to the definition Zn in the main text). Finally, let Jmaki and Jnon−maki denote the extreme points of
the polytopes Zmaki and Znon−maki.

We take inspiration from the results (in particular the proofs) of Theorems 3 and 5 to come up with the
heuristic approach in Algorithm 3 for solving the support finding step (refer to equation (11) in the main
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Table EC.5 Product features used from the SUSHI dataset.

Feature Type Range

Style Binary 0 (maki) or 1 (otherwise)
Oiliness in taste Continuous [0, 4] (0: most oily)

Frequency sold in shop Continuous [0, 1] (1: most frequent)
Frequency of consumption Continuous [0, 3] (3: most frequent)

Normalized price Continuous [1, 5]

text). In particular, the types fmaki and fnon−maki are constructed according to the arguments in the proof of

Theorem 5 above.

Algorithm 3 Solving the support finding step for the SUSHI dataset
1: Cmaki,ext←maxj∈Jmaki cj ; Cnon−maki,ext←maxj∈Jnon−maki cj

2: Let Cmaki,BFGS,ωmaki,BFGS be the best objective and corresponding solution of the following
subproblem as returned by the standard BFGS solver

max
ω∈R4

∑
i∈Smaki

ci ·
(

exp (ω>zi)∑
j∈Smaki

exp (ω>zj)

)

Similarly, compute Cnon−maki,BFGS,ωnon−maki,BFGS.
3: Cmaki←max (Cmaki,BFGS,Cmaki,ext) and Cnon−maki←max (Cnon−maki,BFGS,Cnon−maki,ext)
4: If Cmaki ≥Cnon−maki, then output type fmaki that only considers maki sushi varieties, otherwise

output type fnon−maki that only considers non-maki sushi varieties

Figure EC.1 plots a heatmap of the choice probabilities for the sushi varieties under the recovered types

for both the EM and CG estimators. As can be seen, the types recovered by EM are very similar to each

other. The CG estimator, on the other hand, recovers types that are very distinct in terms of their choice

probabilities. In particular, Types 2 and 4 only consider non-maki style sushi varieties, Types 5-8 and 10

consider only a single non-maki variety whereas Type 9 only considers the maki variety with the largest

market share (see Figure caption for more details).

B.3. IRI dataset

Table EC.6 Statistics for IRI Academic Dataset

Product category # Transactions # Vendors # Offer-sets

Shampoo 235K 168 2,464
Toothbrush 163K 122 2,462

Household cleaner 236K 217 2,470
Yogurt 544K 90 2,470
Coffee 374K 290 2,470

We consider transactions in the first two weeks of the year 2011 which had a total of 1, 272 stores
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Figure EC.1 Heatmap of choice probabilities for each sushi variety under customer types recovered by EM
(left) and CG (right)
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Note. Each row corresponds to a sushi variety and each column corresponds to a customer type—for both EM and
CG we choose the 10 largest types (in terms of proportions). The top 13 rows correspond to maki style sushi varieties
(sorted in decreasing order of empirical market shares) and the remaining 80 rows correspond to non-maki style sushi
varieties (again sorted in decreasing order of market shares). The cells depict the probability of the corresponding
sushi variety being chosen by the corresponding customer type; the cells in grey correspond to sushi varieties that are
not part of the consideration set, and therefore are never chosen.

Since we had more than one offer-set (with varying prices), we could not utilize the heuristic approach
outlined in Algorithm 3 above for solving the support finding step. So instead, we just used the BFGS solver to
determine an approximate solution. The choice probabilities fBFGS obtained using the BFGS solver contained
entries which were very “small” (< 10−5), indicating the (possible) presence of boundary types. Motivated by
this, we considered the heuristic approach outlined in Algorithm 4 to determine whether a recovered type was
a boundary type (which we base on the proof of Theorem 2 above). In particular, let zi = ei ◦ pi denote the
feature vector for product i∈ [n], where eij = Jj = iK and J·K is the indicator function, and pi is the price of
product i. In the algorithm, similar to the proof earlier, we assume that the universe of products is expanded
so that the same product with different prices in two offer-sets is indexed as two distinct products.

We used Gurobi Optimizer version 6.5.1 to solve the LP in Step 5 of Algorithm 4. Following the above
procedure, we recovered boundary types in the mixing distribution for each of the product categories. The
consideration sets for the recovered boundary types were of two kinds: (a) the type never considers a particular
product (or a subset of the products) and (b) the type only considers a single product (or subset of the
products). Some examples of the θ parameters (refer to Theorem 2 and the subsequent discussion) of the
recovered boundary types include:
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Algorithm 4 Solving the support finding step for the IRI dataset
1: fBFGS,ωBFGS← choice probabilities and logit parameter vector returned by BFGS solver
2: For each offer-set St, let it← arg maxj∈St

fBFGS
jt

3: For each offer-set St, let Pairst ←
{

(it, j) | j ∈ St \ {it} and log
(
fBFGS

itt

fBFGS
jt

)
< 105

}
and similarly

Pairst←
{

(it, j) | j ∈ St \ {it} and log
(
fBFGS

itt

fBFGS
jt

)
≥ 105

}
4: Let Pairs←∪Tt=1Pairst and Pairs←∪Tt=1Pairst
5: Let θ (normalized to unit norm) be the solution of the following linear program (LP):

max
ω∈R11

∑
(̄i,j̄)∈Pairs

ω>(zī− zj̄)

s.t. ω>(zi− zj) = 0 ∀ (i, j)∈Pairs; andω>(zī− zj̄)≥ 0 ∀ (̄i, j̄)∈Pairs

6: Let ω0←ωBFGS−‖ωBFGS‖ ·θ

7: Compute f(ω0,θ) as the limiting choice probabilities defined in Theorem 2
8: If

〈
∇loss(g(k−1)),f(ω0,θ)−g(k−1)〉 < 〈

∇loss(g(k−1)),fBFGS−g(k−1)
〉

, then output boundary
type f(ω0,θ), otherwise output non-boundary type fBFGS

Table EC.7 Average number of boundary types (out of 10 types) recovered in IRI
dataset

Product category SQ loss NLL loss

Shampoo 5.0 3.0
Toothbrush 4.0 2.0

Household Cleaner 2.0 2.0
Yogurt 5.0 3.0
Coffee 3.0 2.0

1. [0.,0.,0.,−1.,0.,0.,0.,0.,0.,0.,0.], which means that product 4 will never be considered by this type (as

long as there is another product in the offer-set).

2. [0,0.,0.,0.5,0.5,0.5,0.,0.,0.,0.5,0.], which means that products in the set {4,5,6,10} are strictly preferred

to all other products, and the type will only choose amongst them (provided at least one of them is in the

offer-set).

3. [0.,0.,−0.707,0.,−0.707,0.,0.,0.,0.,0.,0.] which means that product 3 and/or 5 will never be considered

by the type (as long as there is some other product in the offer-set).

Table EC.7 reports the number of boundary types recovered via the procedure outlined above for each of

the product categories and for both loss functions.

Appendix C: Background on Conditional Gradient (aka Frank-Wolfe) algorithm

The conditional gradient algorithm is used for solving optimization problems of the form minx∈D h(x) where

h(·) is a differentiable convex function and D is a compact convex region in the Euclidean space. Starting
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from an arbitrary feasible point x(0) ∈ D, the algorithm finds a descent direction by solving the following

subproblem in each iteration k≥ 1:

v(k) ∈ arg min
v∈D

〈
∇h(x(k−1)),v−x(k−1)〉 , (EC.12)

where x(k−1) is the current solution, ∇h(x(k−1)) is the gradient of h at the point x(k−1), and 〈·, ·〉 is the standard

inner product in Euclidean space. Then, it updates the solution by taking a convex step in the direction

v(k)−x(k−1), i.e. x(k) = x(k−1) +γ(k) · (v(k)−x(k−1)) for some step size γ(k) ∈ [0,1]. The direction v(k)−x(k−1)

is a descent direction, since it can be shown that for a suitable choice of γ(k), we have h(x(k))<h(x(k−1)) so

that moving in the direction of v(k) ensures an improving solution.20 In the classical Frank-Wolfe algorithm,

the step size was fixed as γ(k) = 2/(k+ 2). A popular alternative is to do a line-search for the optimal step

size in each iteration, i.e. choose

γ(k) = arg min
γ∈[0,1]

h
(
x(k−1) + γ · (v(k)−x(k−1))

)
The new iterate remains in the feasible domain (since D is convex) and therefore expensive projection

operators (such as those employed in projected/proximal gradient methods) are not required. The Frank-Wolfe

algorithm is particularly attractive when solving the subproblems in (EC.12) is “easy”—for instance, if D is

a polyhedron, then (EC.12) is just an LP. For more details, refer to Jaggi’s excellent thesis (Jaggi 2011).

Appendix D: Hardness of solving the support finding step

The support finding step can be hard to solve, even when there is only a single offer-set, S1 = [n]. To observe

this, first note that for each iteration k, the subproblem is of the following form:

min
ω∈RD

n∑
j=1

cj
exp (ω>zj)∑n

`=1 exp (ω>z`)
, (EC.13)

where we have dropped the explicit dependence of the coefficients
{
c

(k)
j

}
j∈[n]

on the iteration number k for

succinct notation. To discuss the hardness of solving (EC.13), we consider the following decision variant of

the problem—given some λ∈R, is

min
ω∈RD

n∑
j=1

cj
exp (ω>zj)∑n

`=1 exp (ω>z`)
?
≥ λ. (EC.14)

Note that if we can (efficiently) solve the above decision problem, then the optimal solution to (EC.13) can be

determined through a binary search for the best value of λ in the interval [cmin, cmax], where cmin = minj∈[n] cj

and cmax = maxj∈[n] cj . This is because the objective function in (EC.13) is a convex combination of the

coefficients {cj}j∈[n], and therefore, the optimal value must belong to the interval [cmin, cmax].

Given this, consider the following:

min
ω∈RD

n∑
j=1

cj
exp (ω>zj)∑n

`=1 exp (ω>z`)
≥ λ ⇐⇒

n∑
j=1

cj
exp (ω>zj)∑n

`=1 exp (ω>z`)
≥ λ ∀ω ∈RD

20 This is true as long as
〈
∇h(x(k−1)),v(k)−x(k−1)〉< 0. If

〈
∇h(x(k−1)),v(k)−x(k−1)〉≥ 0, then the convexity of

h(·) implies that h(x)≥ h(x(k−1)) for all x∈D and consequently, x(k−1) is an optimal solution.
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⇐⇒
n∑
j=1

cj exp (ω>zj)≥ λ ·
(

n∑
`=1

exp (ω>z`)
)
∀ω ∈RD

⇐⇒
n∑
j=1

(cj −λ) · exp (ω>zj)≥ 0 ∀ω ∈RD

⇐⇒G(ω)≥ 0 ∀ω ∈RD

where G(ω) def=
∑n

j=1(cj −λ) · exp (ω>zj). In other words, solving the decision problem (EC.14) is equivalent
to certifying the global nonnegativity of the function G(ω). Since not all the coefficients {cj −λ}j∈[n] are
non-negative for any λ∈ (cmin, cmax], G(ω) is a signomial (Boyd et al. 2007). In particular it is non-convex,
and certifying the global nonnegativity of signomials, or equivalently globally minimizing signomials, is
computationally intractable in general (Chandrasekaran and Shah 2016).

Nevertheless, Chandrasekaran and Shah (2016) provide efficiently computable (via solving convex programs)
certificates for certain classes of globally nonnegative signomials, which can be leveraged in designing a binary
search procedure, as discussed above, for solving the support finding step.

Appendix E: Application of our method to panel data

In this section, we show how our CG-based estimator can also be applied to panel data. As much as possible,
we reuse notation from the aggregate data setting.

Suppose we have a population of customers, indexed t= 1,2, . . . , T . For each customer t, we observe Nt > 0
choices over the universe of n products. Let Stm ⊆ [n] and ytm ∈ Stm denote respectively the subset of products
offered to customer t and his/her chosen product, in choice situation m∈ [Nt]. To allow the dependence of
product features on customer characteristics, we denote zjtm ∈RD as the feature vector of product j ∈ Stm.
We summarize all the choice observations as Data def= {(ytm : m∈ [Nt]) | t∈ [T ]}.

We assume that each customer t makes choices according to a logit model of the following form:

ftj,S(ω) = exp (ω>zjtS)∑
`∈S exp (ω>z`tS)

where z`tS is the feature vector of product ` when offered to customer t as part of offer-set S, and ω is the
parameter vector. The population of customers is described by a mixture of logit models, where each customer
samples a vector ω according to some distribution Q (over the parameter space RD) and then makes all
choices according to the logit model with parameter vector ω.

For each customer t, let Ft(ω) def=
∏Nt

m=1 ftytm,m(ω) denote the probability of observing the choices
(yt1,yt2, . . . ,ytNt) under a logit model with parameter ω, where for brevity of notation, we let ftytm,m(ω)
denote ftytm,Stm(ω). Then, define the mapping gt : Q→ [0,1] as

gt(Q) =
∫
Ft(ω) dQ(ω),

and let g : Q→ [0,1]T denote the vector-valued mapping, defined as g(Q) = (gt(Q) : t∈ [T ]). For the panel
data setting, g(Q) represents the mixture likelihood vector under mixing distribution Q.

With the above notation, the negative log-likelihood of observing the choice data under mixing distribution
Q is given by:

NLL(g(Q)) =− 1
T

T∑
t=1

log (gt(Q))
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and our goal is to find the mixing distribution that minimizes the negative log-likelihood:

min
Q∈Q

NLL(g(Q)) (EC.15)

Analogous to the aggregate data setting, we show how problem (EC.15) can be formulated as a constrained
convex program. Define F (ω) def= (Ft(ω) : t∈ [T ]) as the atomic likelihood vector, and let P def=

{
F (ω) : ω ∈RD

}
be the set of all possible atomic likelihood vectors. Using similar arguments as in Section 3.2, it can be
shown that conv(P) is a compact convex set and {g(Q) : Q∈Q}= conv(P). Then, following the sequence of
transformations from Section 3.2, it follows that instead of solving problem (EC.15), we can equivalently
solve:

min
g∈conv(P)

NLL(g),

which is a convex program with a compact convex constraint set in RT . The conditional gradient algorithm
can again be used to solve the above program, where now the support finding step at iteration k is of the form:

min
ω∈RD

− 1
T

T∑
t=1

(
1

g(k−1)
t

)
·

(
Nt∏
m=1

exp (ω>zjtm)∑
`∈Stm

exp (ω>z`tm)

)
Our theoretical results do not extend to the above subproblem, which can be much harder to solve than
in the aggregate data setting. However, one can still use an off-the-shelf solver like BFGS to determine an
approximate solution, and check whether it generates an improving solution for the outer convex program.

In the panel data setting, one can think of different ways of defining the squared loss function. One
possibility is to use the following definition:

SQ(g(Q)) = 1
2 ·T

T∑
t=1

(1− gt(Q))2
,

for which the conditional gradient algorithm is directly applicable, since the loss function is convex in the
mixture likelihood vector g(Q). Another definition that has been suggested in the literature (see Section III
in Bajari et al. 2007) sums over all possible choice sequences, for each customer. Under this definition, the
estimation problem can still be formulated as a convex program and the conditional gradient algorithm can
be used to recover the mixing distribution, with the caveat that evaluating the loss function (and its gradient)
can be intractable.
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